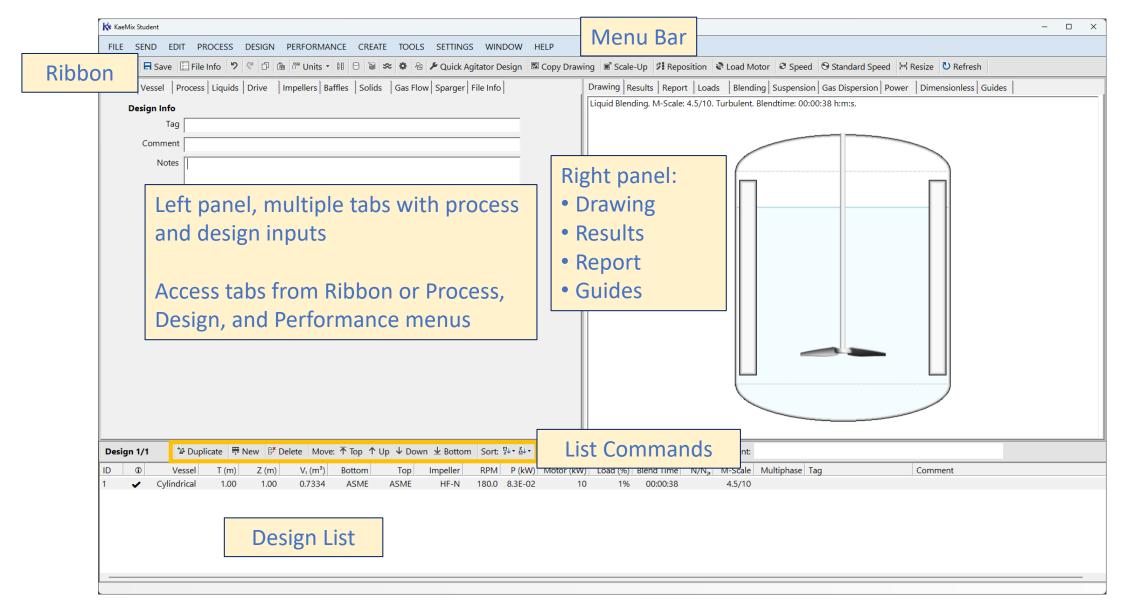
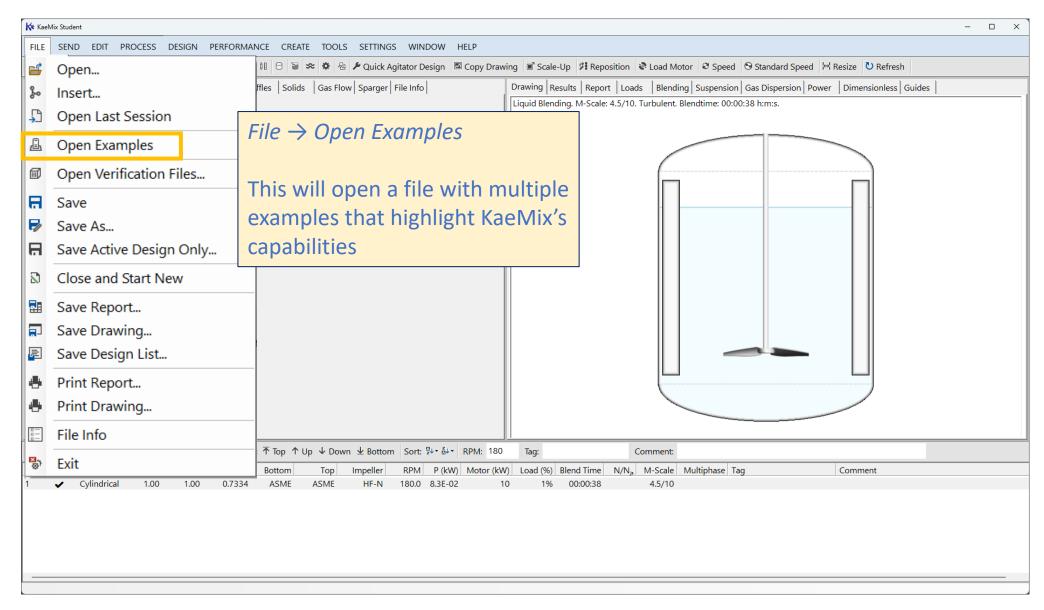
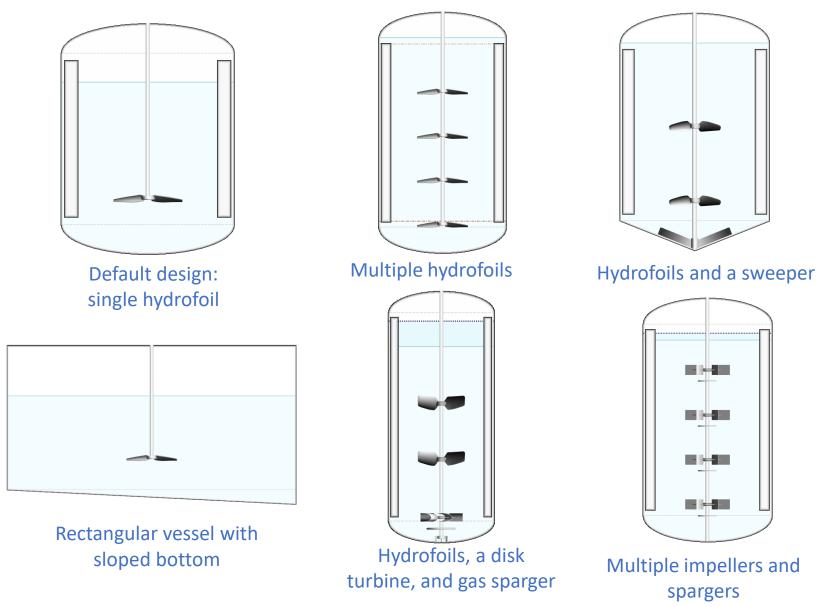
K KaeMix

KaeMix Student 2025 User Guide

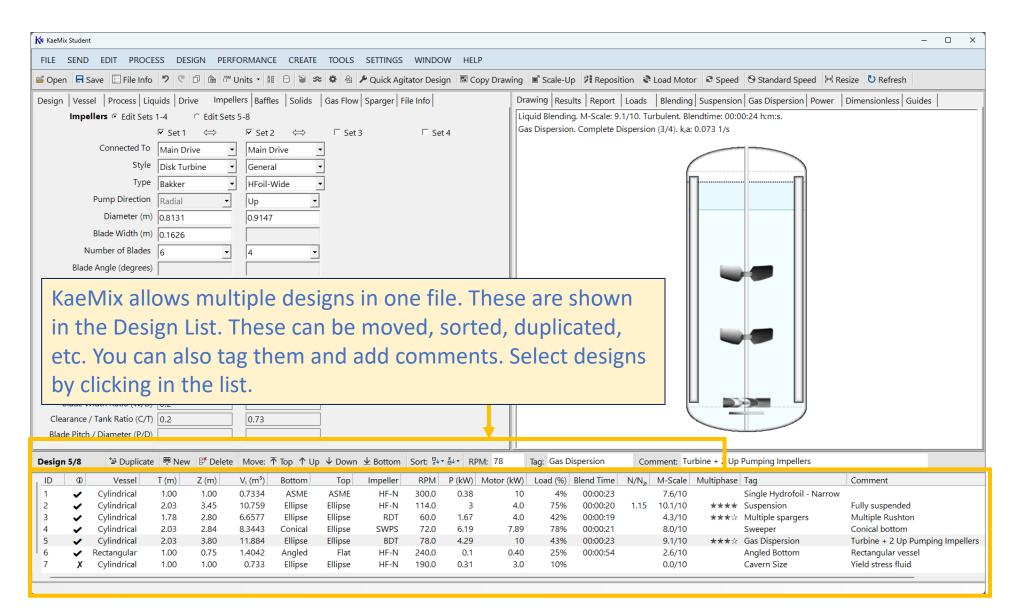

KaeMix Documentation May 27, 2025 www.kaemixllc.com support@kaemixllc.com


Summary

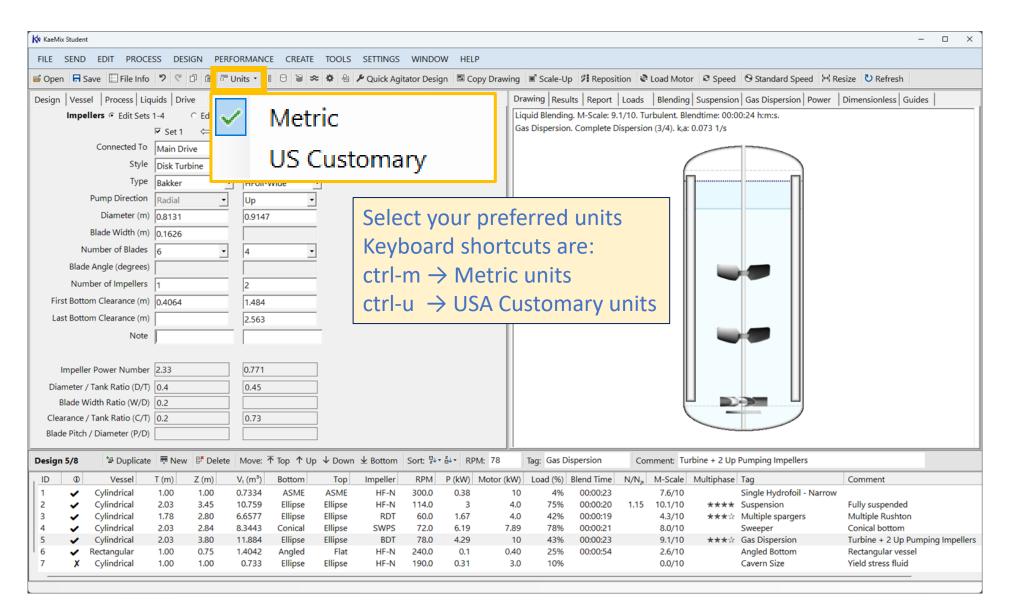
- This document describes KaeMix Student's features, user interface, and how to use the program
- For instructions on how to install KaeMix Student, see the installation guide


Screen Layout

Built In Examples



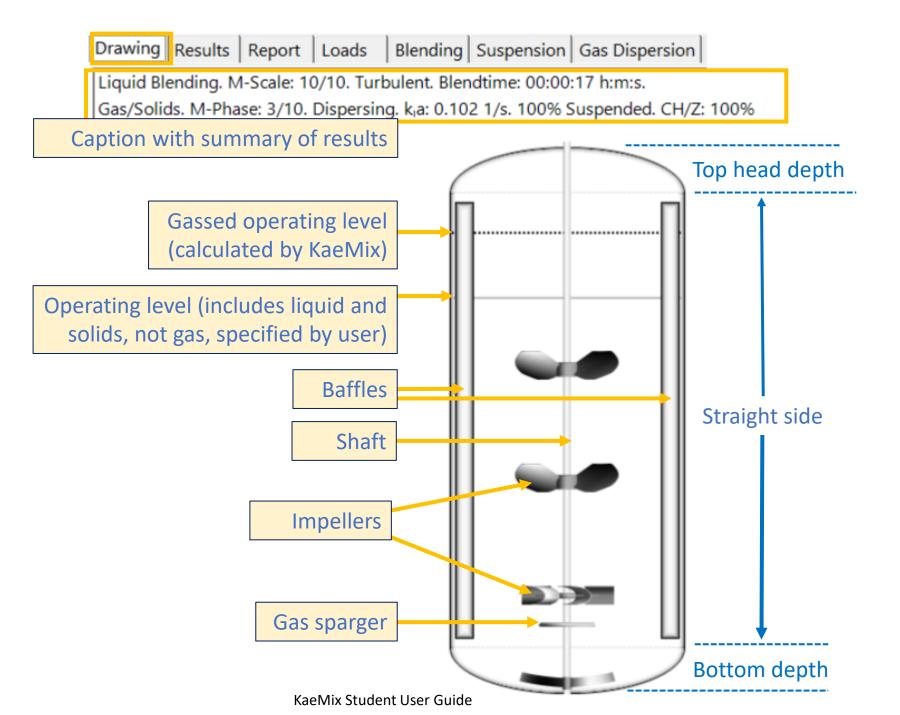
Design Examples



© 2025 KaeMix LLC

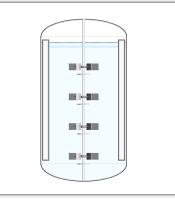
Multiple Design Capability

Unit Systems: Metric and USA


Workflow

Workflow

	😽 KaeMix :	Student	:																		– 🗆 X
	FILE E	DIT	PROCESS DE	SIGN P	ERFORMAN	NCE TOO	LS SETTIN	GS WIN	DOW HEL	P											
	💕 Open	🖪 s	ave 🔲 File Info	9 @	0 @ ~	Units - 🛙	8 8 8	: Ⅲ ≡	🔎 Quick Agi	itator Desi	gn 🖾 C	opy Drawing	Scale-Up	Reposit	ion 🗟 Lo	ad Motor	Spee	ed 🛇 Standard	Speed 🖂	Resize 🖸 Refre	sh
	Design	Vesse	el Process Liq	uids Dri	ve Impe	llers Baffl	es Gas Flov	v Sparger	Solids P	articles F	ile Infc	Drawir	g Results	Report Loa	ids Blen	ding Sus	pension	Gas Dispersion	Power [Dimensionless G	uides
			Vessel Desig	ın	1							- I I	Power Draw	,				M-Scale	7.9/10 (St	rong)	
			Vessel Sty	le Cyline	drical		•						Total P _u (kW)	4.7889			Bler	nd Time (h:m:s)	00:00:24		
	Diameter (m)												Total P₀ (kW)	4.2918				Cavern Volume			
			Width (n	-									P ₉ /P	0.8962							
Tunica		+-	rt in th		ft na	noly	with t	ho				M	ain Impeller	1: Bakker							
Typica	illy S	ld	rt in th	ele	пра	nerv		ne				%	Power Draw	45.7				M-Phase	3.0/10 (M	oderate)	
design	n inf	ori	mation	orv	vesse	el de	sign.	and					Reynolds Re	13752			Parti	icle Suspension			
Ŭ							U ,						Description	Turbulent			Impe	eller Speed / N _{js}			
then r	nove	e t	hrough	n the	e tab	s tro	m lei	t to					Power Po	2.33				Cloud H/Z			
right	VACC		, proce	cc l	iquic			lide				She	ar Rate (1/s)	15.6				Gas Dispersion		9	
<u> </u>				1.1			35, 50	nus,				Eff.	Visc. (mPa.s)	75				Gas Holdup	L		
drive,	imp	ell	lers, ba	ffle	s, eto	С.					ſ		. ,					k _i a (1/s)	0.0729		
· · · ·												In th	e rigł	nt par	nel y	ou					
			Vessel Materi	Joranni	ess Steel		<u> </u>						Ŭ		· · · · ·						
			Wall Thickness (n	ו)								can	lew	your	prog	ress					
		Bott	tom Thickness (m)								from	eith	er the	د						
		We	tted Parts Materia	l Stainl	ess Steel		•														
			Sealir	9 Mech	anical Seal	- Double	•					Drav	ing c	or Res	sults	tab				9	
			1 -	1	[r .					L					_					
	Design !	5/8	🖆 Duplicate	T New	Delete	e Move:	↑ Top ↑ Up	↓ Down		Sort: ₽	rövtrev	v/s 1.3	Tag: Gas Dispe	rsion	Comm	ent: Turbin	e + 2 Up Pu	mping Impellers			
		0	Vessel	T (m)	Z (m)	V ₁ (m³)	Bottom	Тор	Impeller	rev/s	. ,	Motor (kW)				1-Scale N	/I-Phase		N	Comment	
	2	ž	Cylindrical Cylindrical	1.00 2.03	1.00 3.45	0.733 10.759	Ellipse Ellipse	Ellipse Ellipse	HF-N HF-N	5.0 1.9	0.38 3.0	2.0 4.0	19% 75%	00:00:23 00:00:19		7.6/10 9.2/10	3.0/10	Single Hydrofoil Suspension	- Narrow	Fully suspended	I
	3		Cylindrical	1.78	3.02	7.2114	Ellipse	Ellipse	RDT	1.0	2.35		59%	00:00:20		4.1/10		Multiple sparger	s	Multiple Rushto	
	4	J	Cylindrical Cylindrical	2.03 2.03	2.84 3.80	8.2344 11.884	Conical Ellipse	Ellipse Ellipse	SWPS BDT	1.2 1.3	6.36 4.29	7.9 10.0	81% 43%	00:00:21		7.3/10 7.9/10	3.0/10	Sweeper Gas Dispersion		Conical bottom Turbine + 2 Up	Pumping Impelle
	6	1	Rectangular	1.60	0.75	1.4042	Angled	Flat	HF-N	4.0	0.3	0.4	76%	00:00:18		5.1/10	,	Angled Bottom		Rectangular ves	sel
	7	X	Cylindrical	1.00	1.00	0.733	Ellipse	Ellipse	HF-N	7.0	2.18	25.0	9%	00:12:13		0.0/10		Cavern Size		Yield stress fluid	1
	C:\KaeMix\E	amples	KMS.kaemix																		


Drawing

Results

- P_u: total power draw of all submerged impellers, ungassed
- P_g: total power draw of all submerged impellers, gassed
- P_g/P_u: ratio between gassed and ungassed power draw
- Main Impeller: name of the impeller with the highest power draw
- % Power Draw: main impeller power draw as percentage of total
- Reynolds Re: Reynolds number of main impeller
- Description: if flow is turbulent or laminar
- Power Po: main impeller power number
- Shear Rate: shear rate in region of main impeller
- Eff. Visc.: effective viscosity based on main impeller shear rate
- M-Scale: a 1 to 10 scale of agitation for liquid mixing
- Blend time: time to reach 100% uniformity in liquid
- Cavern volume: volume of caverns around impellers for yield stress fluids
- M-Phase: a 1 to 10 scale of agitation for the gas and/or solids phases
- Particle Suspension: percentage of the solids suspended into the liquid
- Impeller Speed / Njs: ratio between impeller speed and the just-suspended speed for the impeller that contributes the most to the off-bottom suspension
- Cloud H/Z: ratio between the height of the solids cloud and the operating level
- Gas Dispersion: if the gas is being dispersed or the impeller is flooded
- Gas Holdup: volume of gas divided by total volume (liquid + solid + gas)
- K_la: gas-liquid mass transfer coefficient

Drawing Results	Report	Loads	Blending	Suspension	Gas Dispers	sion	Power	Dimensionless
Power Draw					M-Scale	8/1	0	
Total P _u (kW)	Blend Ti							
Total P ₉ (kW)	3.6888			Cave	ern Volume			
P ₉ /P _u	0.7676							
Main Impeller	1: Bakl	er						
% Power Draw	% Power Draw 45.5				M-Phase	3/1	0	
Reynolds Re	13752			Particle S	Suspension			
Description	Turbul	ent		Impeller S	Speed / N _{js}			
Power Po	2.33				Cloud H/Z			
Shear Rate (1/s)	15.6			Gas	Dispersion	Dis	persing	
				0	Gas Holdup	12.	5%	
Eff. Visc. (mPa.s)	75				k _ı a (1/s)	0.0	665	

M-Scale

• Originally, a 1 to 10 Scale of Agitation* for blending applications, described in:

"How to design agitators for desired process response" Hicks et al., Chemical Engineering, April 1976

- Scale of 1 to 10:
 - M-Scale 1-2 are for applications requiring minimum fluid velocities to achieve the process result.
 - <u>M-Scale 2</u> will blend miscible liquids to uniformity if specific gravity differences are less than 0.1; blend miscible fluids to uniformity if the viscosity of the most viscous is less than 100 times that of the other; establish complete fluid-batch control; and produce a flat, but moving, fluid-batch surface.
 - <u>M-Scale 3-6</u> are characteristic of fluid velocities in most chemical process industries agitated batches.
 - <u>M-Scale 6</u> will blend miscible liquids to uniformity if specific gravity differences are less than 0.6; blend miscible fluids to uniformity if the viscosity of the most viscous is less than 10000 times that of the other; and produce surface rippling at lower viscosities.
 - <u>M-Scale 7-10</u> are characteristic of applications requiring high fluid velocity for the process result, such as in critical reactors.
 - <u>M-Scale 10</u> will blend miscible liquids to uniformity if specific gravity differences are less than 1.0; blend miscible fluids to uniformity if the viscosity of the most viscous is less than 100,000 times that of the other; and produce surging surfaces at low viscosities.

Report

😾 KaeMix

FILE EDIT PROCESS DESIGN PERFORMANCE TOOLS SETTINGS WINDOW HELP

🖆 Open 🛱 Save 🗄 File Info 🆻 🦿 🗘 🏛 🖱 Units 🔹 🕮 🗢 🗉 🛎 🗶 🗉 🛎 🖉 Quick Agitator Design 🖾 Copy Drawing 🖻 Scale-Up 💋 Reposition 🗞 Load Motor 😵 Speed 😒 Standard Speed 🖂 Resize 🖏 Refresh

Process Liquids Drive Impellers Baffles Heat Gas Flow Sparger Solids Particles Draft Tube Sta

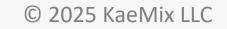
```
Process Operating Conditions
```

You can view a report from the right panel.

To print it, right click in the report to get the print menu or use *File* \rightarrow *Print*.

You can save the report or send it to MS-Office or LibreOffice from the File menu.

age: ◀ ▶	_ Drawing results	oads Blending Suspension Gas Dispersion HT Rate Power Dimensionless Guides										
	File Info											
	Project Name	KaeMix Examples Project										
	Company	KaeMix LLC										
	Location	Atlantis										
	Customer	magineering Inc										
	Designer	Orca Doe										
	Manufacturer	AMCE										
	Design Info											
	Design	8 🗸										
	Tag	Gas Dispersion										
	Comment	Turbine + 2 Up Pumping Impellers										
	Liquid Flows	Batch System										
	Gas Dispersion	1										
	Solid Suspension	X										
	Liquid Dispersion	X										
	Heat Transfer	X										
	Program Message	es										
		.9/10. Turbulent. Blendtime: 00:00:25 h:m:s.										
	Gas Dispersion. M-Phase: 3	3.0/10. Dispersing. қа: 0.073 1/s										
rev/s	1.3 Tag: Gas Dispersion	Comment: Turbine + 2 Up Pumping Impellers										
rev/s	ag. Jas Dispersion	Commence a op ramping imperiors										


- 0

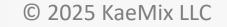
 \times

Desig	n 8/11	The Duplicate	IT New	🗗 Delete	Move:	↑ Top ↑ Up	↓ Down		Sort: ≌	rē∳ • rev	//s 1.3	Tag: Gas Disp	ersion	Com	nment: Turk	oine + 2 Up Pu	imping Impellers	
ID	٩	Vessel	T (m)	Z (m)	V₁ (m³)	Bottom	Тор	Impeller	rev/s	P (kW)	Motor (kW)	Load (%)	Blend Time	N/N _{js}	M-Scale	M-Phase	Tag	Comment
5		Cylindrical	2.03	2.84	8.7836	Ellipse	Ellipse	SWPS	1.2	6.36	7.9	81%	00:00:21		7.0/10		HTR Coils	
6	✓	Rectangular	5.17	3.50	71.4	Angled	Flat	HF-W	2.0	10.4	16.0	65%	00:01:08		4.3/10		Side Entering	
7		Cylindrical	1.78	2.27	5.3617	ASME	ASME	PUMPS	2.0	5.44	24.6	22%	00:00:26		2.4/10		Pumper	
8	 Image: A second s	Cylindrical	2.03	3.80	11.884	Ellipse	Ellipse	BDT	1.3	3.94	33.5	12%	00:00:24		7.9/10	3.0/10	Gas Dispersion	Turbine + 2 Up Pumping Impeller
9	✓	Cylindrical	2.54	4.49	21.967	ASME	ASME	SWPS	1.5	10.15	57.7	18%	00:00:29	0.59	9.8/10	1.0/10	Draft Tube	
10	✓	Horizontal	1.00	0.75	1.1529	Ellipse	Ellipse	HF-N	4.0	0.3	0.9	34%	00:00:10		5.8/10		Horizontal	
11	✓	Cylindrical	2.00	2.00	6.2832	Flat	Flat	RDT	0.63	1.36	10.0	14%	00:00:46		4.9/10		Droplet Size	
C:\KaeMi	Exampl	es.kaemix																

Guides

Guides: Applications

	😽 KaeMix Student	– D X
	FILE EDIT PROCESS DESIGN PERFORMANCE TOOLS SETTINGS WINDOW HELP	
	ビ Open 🗟 Save 🗄 File Info 🦻 🦿 🗗 🏛 📅 Units 🔹 🕸 🖯 😂 🗢 🗉 = 🌶 Quick Agitator Design 🖾 Copy Drawing 📓 Scale-Up 🗱	Reposition 🗟 Load Motor 🗟 Speed 🕲 Standard Speed 🚧 Resize 🖸 Refresh
	Design Vessel Process Liquids Drive Impellers Baffles Gas Flow Sparger Solids Particles File Info Drawing Results Report	t Loads Blending Suspension Gas Dispersion Power Dimensionles Guides
	Primary Liquid Fermentation Broth Guide Guide Density (kg/m³) 1100 Fermentation Broth Fermentation Broth	equipment C Application
		ermentations 🗾
		Pharmaceuticals 🔹
		Aerobic fermentations, e.g. penicillin, steroids, vitamins, etc. Scale-up from previous experience strongly influences design. Fluids are often non-Newtonian because of suspended cells. Gas dispersion. Design variable: gas flow rate. Typical scale of agitation M-Phase: 9 to 10.
	e of Agitation: a 1 to 10 mixing scale cating agitation intensity: <i>M-Scale</i> Application	 Application
	Industry Fermentation	ons
	Application Pharmaceu	ticals 🔹
		mentations, e.g. penicillin, steroids, vitamins, etc. Scale-up from previous strongly influences design. Fluids are often non-Newtonian because of
	ID	cells. Gas dispersion. Design variable: gas flow rate. Typical scale of agitation
	Gates, Hicks, Dickey. Application	
-	recommen	blade, gas-dispersing disk turbine with up-pumping high solidity hydrofoils is ded.

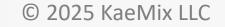

© 2025 KaeMix LLC

Guides: Equipment

😽 KaeM	lix			_														-	o x
FILE	EDIT	PROCESS DES	SIGN PE	RFORMAN	CE TOC	LS SETTIN	GS WINI	DOW HEL	Р										
💕 Ope	n 🖪 :	Save 🗄 File Info	9 9	j 💼 🕾 (Units - 🕯	1 8 🗎 🛪	: □ =	🔑 Quick Ag	itator Desi	ign 🖾 Copy l	Drawing	Scale-U	p 🕅 Reposit	tion 🗟 L	oad Moto	or 🤤 Spe	ed 😌 Standard Speed 🛛	Resize 🖸 Refresh	
Design	Vess	el Process Liq	uids Driv	e Impell	lers Baffl	es Heat	Gas Flow	Sparger S	olids P	articles 🔺 🕨	Drawi	ng Results	Report Lo	ads Ble	nding Su	uspension	Gas Dispersion HT Rate	Power Dimensionles	Guides
	Primary Liquid Fermentation Broth										Guide © Equipment © Application								
	Viscosity at 1 The Equipment guide in the right												Bakker				-		
		Flov	oane	el let	's vo	ou vie	w th	ne dif	fere	nt			,						
	Flowpanel let's you view the differentYield 1impeller and equipment styles that											ertically asyr ch as ferme		concave b	lades. Use	ed for dem	anding gas dispersion appl	cations	
									yies	llat									
		🗆 Seconda	are a	availa	able	in Ka	eMi	X											
												cl	bockwise rotation	on			Counter clockwise rotation		
Desig	n 8/11	🐄 Duplicate	Thew New	₽* Delete	Move:	Т ор ↑ Up	↓ Down	业 Bottom	Sort: ₽	• ≝↓• rev/s		Tag: Gas Disp					mping Impellers		
ID 5	1	Vessel	T (m)	Z (m)	V ₁ (m ³)	Bottom	Тор	Impeller	rev/s	P (kW) Mo			Blend Time	N/N_{js}		M-Phase	Tag HTR Coils	Comment	
6	~	Cylindrical Rectangular	2.03 5.17	2.84 3.50	8.7836 71.4	Ellipse Angled	Ellipse Flat	SWPS HF-W	1.2 2.0	6.36 10.4	7.9 16.0	81% 65%	00:00:21 00:01:08		7.0/10 4.3/10		Side Entering		
7		Cylindrical	1.78	2.27	5.3617	ASME	ASME	PUMPS	2.0	5.44	24.6		00:00:26		2.4/10		Pumper		
8	1	Cylindrical Cylindrical	2.03 2.54	3.80 4.49	11.884 21.967	Ellipse ASME	Ellipse ASME	BDT SWPS	1.3 1.5	3.94 10.15	33.5 57.7	12% 18%	00:00:24 00:00:29	0.59	7.9/10 9.8/10	3.0/10 1.0/10	Gas Dispersion Draft Tube	Turbine + 2 Up Pum	ping Impeller
10	ž	Horizontal	2.54 1.00	0.75	1.1529	Ellipse	Ellipse	HF-N	4.0	0.3	0.9	34%	00:00:29	0.39	5.8/10	1.0/10	Horizontal		
11	1	Cylindrical	2.00	2.00	6.2832	Flat	Flat	RDT	0.63	1.36	10.0	14%	00:00:46		4.9/10		Droplet Size		
C:\KaeMix	(\Example	es.kaemix																	

File and Design Info

File Info


	😽 KaeMix			
K KaeMix	FILE SEND EDIT PROCESS	- 🗆 X		
FILE EDIT PROCESS DESIGN PERFORMANCE TOOLS SETTINGS WINDOW HELP				
🗃 Open 🛱 Save 📱 File Info 👂 🥙 🗇 🏦 📅 Units 🔹 👭 🖯 🗃 🕿 🏟 🧟 🗉 🗸 Quick Agitator Design	🗳 Open	Motor 🛛 Speed 🕲 Standard Speed 🔄 Resize 🖑 Refresh		
Mechanical Impellers Baffles Solids Particles Gas Flow Sparger Heat Draft Tube Stages File Info	lnsert	uspension Gas Dispersion HT Rate Power Dimensionless Guides		
	Open Last Session	ime: 00:00:25 h:m:s.		
Project Name KaeMix Examples Project	🚨 Open Examples	1.073 1/s		
Company KaeMix LLC Enter the file	Open Verification Files			
Location Atlantis information here	R Save			
Customer Imagineering Inc.	Save As			
Designer	R Save Active Design Only			
Manufacturer AMCE	Close and Start New			
Project Notes	🖩 Save Report			
	Save Drawing			
Enter notes here	Save Design List			
	🖶 Print Report			
	Print Drawing			
In the File Info tab you can enter relevant	🗄 File Info			
information about the contents of this file.	🖏 Exit			
	1.3 Tag: Gas Dispersion Comment: Turbine	+ 2 Up Pumping Impellers		
ID ① Vessel T (m) Z (m) V ₁ (m³) Bottom Top Impeller rev/s P (kW) N	lotor (kW) Load (%) Blend Time N/N _{js} M-Scale M	I-Phase Tag Comment		
1 ✓ Cylindrical 1.00 1.00 0.733 Ellipse Ellipse HF-N 5.0 0.38 2 ✓ Cylindrical 1.52 2.31 4.0193 Ellipse Ellipse COW 0.1 16.89	10.0 4% 00:00:23 7.6/10 30.0 56% 00:23:03 2.3/10	Default Design Helical		
3 ✔ Cylindrical 2.03 2.84 8.7836 Ellipse Ellipse SWPS 1.2 6.31	8.0 79% 00:00:22 7.0/10	HTR Coils		
4 ✓ Cylindrical 2.03 3.45 10.759 Ellipse Ellipse HF-N 2.0 3.5 5 ✓ Cylindrical 2.03 3.80 11.884 Ellipse Ellipse BDT 1.3 4.29		3.5/10 Suspension Fully Suspended 3.0/10 Gas Dispersion Turbine + 2 Up Pumping Impellers		
6 ✓ Rectangular 5.17 3.50 71.4 Angled Flat HF-W 2.0 10.4	16.0 65% 00:01:09 4.3/10	Side Entering		
7 V Horizontal 1.18 0.75 1.1529 Ellipse Ellipse HF-N 4.0 0.3	0.9 34% 00:00:13 5.8/10	Horizontal		

Design Info

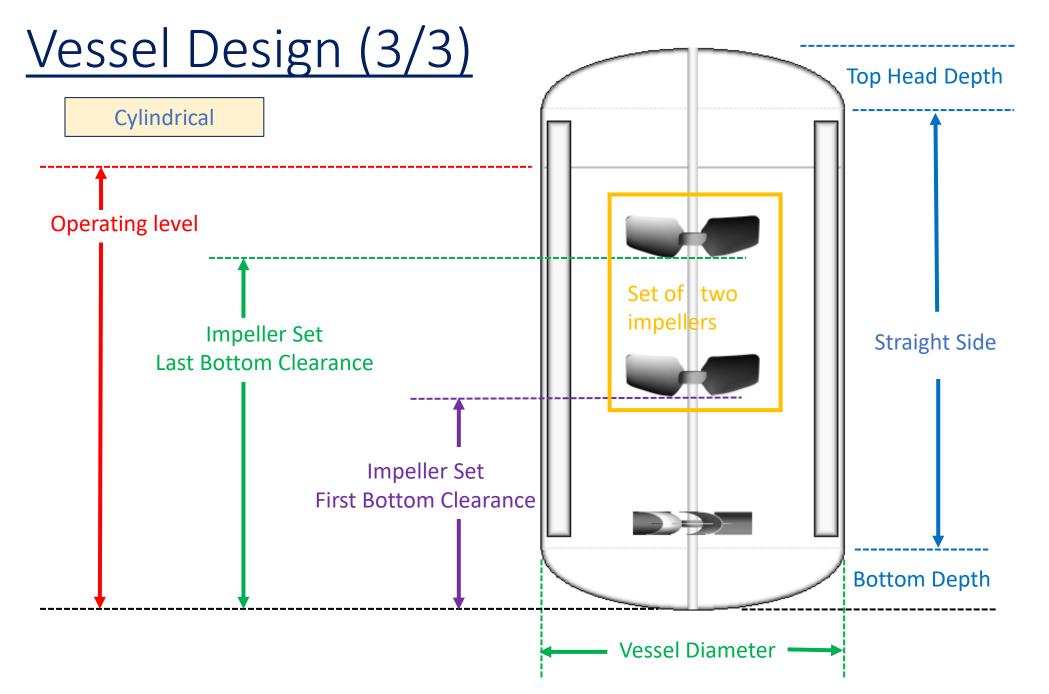
😽 KaeMix	- D X
FILE EDIT PROCESS DESIGN PERFORMANCE TOOLS SETTINGS WINDOW HELP	
ビ Open 🖬 Save 🗄 File Info 🦻 🦿 🗇 🏦 📅 Units 📲 🖯 🗑 📚 💷 = 🗡 Quick Agitator Design 🖾 Copy Dra	awing 🗐 Scale-Up 🕫 Reposition 🗟 Load Motor 😂 Speed 😌 Standard Speed 🙌 Resize 🙂 Refresh
Design Vessel Process Liquids Drive Impellers Baffles Heat Gas Flow Sparger Solids Particles 4	Drawing Results Report Loads Blending Suspension Gas Dispersion HT Rate Power Dimensionless Guides
	Liquid Blending, M-Scale: 7.9/10. Turbulent. Blendtime: 00:00:25 h:m:s.
Design Info	Gas Dispersion. M-Phase: 3.0/10. Dispersing. k _i a: 0.073 1/s
Tag Gas Dispersion	
Comment Turbine + 2 Up Pumping Impellers	
Commente Turbine + 2 op Pumping impeliers	
Notes	
In this tab you can enter design	
related information and notes.	
related information and notes.	
Additional Phenomena 🔽 Gas Dispersion 🔽 Solids Suspension	
🗆 Heat Transfer 👘 Liquid Dispersion	
Additional Components 🗖 Draft Tube 👘 Stage Dividers	
Note: whereas the File Info applies to the who	le file the
Design Info is separate for each design in the j	file.
Design 8/11 The Duplicate Reverse New Problem Move: The Top the Up \checkmark Down \checkmark Bottom Sort: $\frac{1}{2} \checkmark \vec{a} \lor \vec{a} \lor$ rev/s 1.3	
ID ① Vessel T (m) Z (m) V ₁ (m ³) Bottom Top Impeller rev/s P (kW) Moto 5 Cylindrical 2.03 2.84 8.7836 Ellipse Ellipse SWPS 1.2 6.36	
5 Cylindrical 2.03 2.84 8.7836 Ellipse Ellipse SWPS 1.2 6.36 6 ✓ Rectangular 5.17 3.50 71.4 Angled Flat HF-W 2.0 10.4	7.9 81% 00:00:21 7.0/10 HTR Coils 16.0 65% 00:01:08 4.3/10 Side Entering
7 Cylindrical 1.78 2.27 5.3617 ASME ASME PUMPS 2.0 5.44	24.6 22% 00:00:26 2.4/10 Pumper
8 ✓ Cylindrical 2.03 3.80 11.884 Ellipse Ellipse BDT 1.3 3.94 9 ✓ Cylindrical 2.54 4.49 21.967 ASME ASME SWPS 1.5 10.15	33.5 12% 00:00:24 7.9/10 3.0/10 Gas Dispersion Turbine + 2 Up Pumping Impelle 57.7 18% 00:00:29 0.59 9.8/10 1.0/10 Draft Tube
10 ✔ Horizontal 1.00 0.75 1.1529 Ellipse Ellipse HF-N 4.0 0.3	0.9 34% 00:00:10 5.8/10 Horizontal
11 ✔ Cylindrical 2.00 2.00 6.2832 Flat Flat RDT 0.63 1.36	10.0 14% 00:00:46 4.9/10 Droplet Size
C:\KaeMix\Examples.kaemix	

Vessel Design

Vessel Design (1/3)**Vessel Styles Bottom Styles** Bottom Style Application Vessel ASME Process Liquids Gas Flow Solids Vessel Design Bottom Depth (m) Flat Vessel Style Vessel Design ASME Cylindrical Bottom Volume (m³) Conical Vessel Style Cylindrical Cylindrical Straight Side (m) Dish Top Head Style Elliptical Rectangular Straight Side (m) Top Head Depth (m) 4.064 Hemispherical ASME F&D (6%) Top Head Volume (m³) Diameter (m) ASME F&D (10%) 2.032 ASME 80:10 Total Volume (m³) Width (m) ASME 80:6 Vessel Material DIN 28011 **Sealing Options** Bottom Style DIN 28013 Elliptical Wall Thickness (m) 2:1 Elliptical Bottom Depth (m) 1.9:1 Elliptical Bottom Thickness (m) Bottom Depth (m) 0.4064 Axial Shaft Seal Angled Left to Right Bellow Seal Wetted Parts Material Bottom Volume (m³) Bottom Volume (m³) Angled Right to Left 0.8786 Cartridge Seal Angled Back to Front Sealing Top Head Style Top Head Style Dripless Seal Angled Front to Back Elliptical Gas Barrier Seal Top Head Depth (m) Top Head Depth (m) 0.4064 Gland Packing Seal Vessel Material Stainless Stee Labyrinth Seal Top Head Volume (m³) Top Head Volume (m³) 0.8786 Lip Seal Wall Thickness (m) Composite Total Volume (m³) Mechanical Seal - Double Concrete Total Volume (m³) 14.06 Bottom Thickness (m) Glass Mechanical Seal - Single Vessel Material Perspex Vessel Material Wetted Parts Material None - Open to Surroundings Stainless Steel Platinum Radial Shaft Seal Wall Thickness (m) Sealing Plexiglass Wall Thickness (m) Stuffing Box PVC Bottom Thickness (m) Stuffing Box - 3 Rings Stainless Steel Bottom Thickness (m) Stainless Steel 304LSS Stuffing Box - 6 Rings Wetted Parts Material Stainless Steel 304SS Tandem Seal Wetted Parts Material Stainless Steel Stainless Steel 316LSS Sealing Mechanical Seal - Double **Materials** Stainless Steel 316SS Sealing Mechanical Seal - Double Stainless Steel 317LSS T Titanium

KaeMix Student User Guide

Titanium - Grade 2



Settings | Equipment Preview **OFF** Standard dropdown when clicking Bottom Style

Vessel Design	
Vessel Style	Cylindrical 🗸
Diameter (m)	2.032
Width (m)	
Straight Side (m)	2.438
Bottom Style	ASME 🔹
Bottom Depth (m)	Flat ASME
Bottom Volume (m³)	Conical
Top Head Style	Dish Elliptical
Top Head Depth (m)	Hemispherical
Top Head Volume (m³)	ASME F&D (6%) ASME F&D (10%)
Total Volume (m³)	ASME 80:10 ASME 80:6
Sealing	DIN 28011
Vessel Material	DIN 28013 2:1 Elliptical
Wall Thickness (m)	1.9:1 Elliptical
Bottom Thickness (m)	Angled Left to Right Angled Right to Left
Wetted Parts Material	Angled Back to Front Angled Front to Back
Note	


Settings | Equipment Preview **ON** opens graphical selection panel when clicking Bottom Style ers Baffles | Solids | Particles | Gas Flow | Sparger 🔳 🕨 Bottom Style $\left|\times\right|$ Vessel Design Vessel Style Cylindrical -C Flat ASME Diameter (m) 2.032 Width (m) Close the panel C ASME F&D (6%) Conical Straight Side (m) 4.064 by clicking x-box Bottom Style ASME O Dish C ASME F&D (10%) or press Enter or Bottom Depth (m) 0.3441 Esc on keyboard Bottom Volume (m³) 0.6796 C Elliptical O ASME 80:10 Top Head Style Elliptical Top Head Depth (m) 0.4064 O 2:1 Elliptical O ASME 80:6 0.8786 Top Head Volume (m³) 13.859 Total Volume (m³) O 1.9:1 Elliptical O DIN 28011 Sealing Mechanical Seal • Vessel Material Stainless Steel -C Hemispherical O DIN 28013 Wall Thickness (m) 0.003 Bottom Thickness (m) 0.003 C Angled Left to Right C Angled Right to Left Wetted Parts Material Stainless Steel Note C Angled Back to Front C Angled Front to Back

© 2025 KaeMix LLC

Process

Process Operating Conditions

Design Vessel Process Liquids Drive Mechanical Impel Process Operating Conditions Operating Level (m) 1 4	ellers Baffles Solids	Operating level includes liquid and solids but excludes gas. Measured vertically from the deepest point in the bottom. Minimum level is the bottom depth. Maximum level is to the top of the straight side	
Gassed Operating Level (m)		Gassed operating level includes gas and is calculated by KaeMix	
Operating Volume (m ³) 0.7303		Operating volume corresponding to operating level. You can specify either volume or level and the other is calculated	
Operating Pressure (Atm) 1 Average Pressure (Atm) 1.048		Operating temperature	
Pressure at Bottom (Atm) 1.097		Operating pressure (in the head space)	
Liquid Weight (kg) 730.3 Mixture Weight (kg) 730.3 Additional Level Indicator (m) 0.4			Average pressure in the liquid, and pressure at the deepest point at the bottom, in Atmosphere (or Bar depending on settings), calculated by KaeMix
	Continuous Flow	Specify an additional level for in the drawing	
Continuous Flow Rate (m ³ /s) 0.01 Residence Time (h:m:s) 00:01:13 Residence Time / Blend Time 2.48		If you specify continuous flow and a flow rate, KaeMix will calculate the residence time	

© 2025 KaeMix LLC

Liquids (1/3)

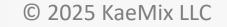
Primary Liquid	Water (T-dependent)
Density (kg/m³)	Water
	Water (T-dependent)
Viscosity Model	Fermentation Broth
Viscosity at 1/s (mBals)	Acetic Acid (C ₂ H ₄ O ₂)
Viscosity at 1/s (mPa.s)	Acetone ((CH₃)₂CO)
Flow Index n"	Benzene (C ₆ H ₆)
	Carbon Disulfide (CS₂)
Yield Stress (Pa)	Carbon Tetrachloride (CCl ₄)
C ()	Castor Oil
Safety	Chloroform (CHCl₃)
	Decane (C10H22)
	Dodecane (C12H26)
	Ethanol (C₂H₅OH)
	Ethylene Glycol ((CH ₂ OH) ₂)
	Glycerol (C₃H ₈ O₃)
	Heptane (C7H ₁₆)
	Hexane (C ₆ H ₁₄)
	Kerosene
	Linseed Oil
	Methanol (CH₃OH)
	Octane (C ₈ H ₁₈)
	Phenol (C ₆ H₅OH)
	Propanol (C₃H₀O)
	Propylene Glycol (C₃H ₈ O₂)
	Toluene (C ₇ H ₈)
	Turpentine (C10H16)

If you select a liquid from the dropdown list the physical properties will be set automatically. The properties are constant, except for *Water (T-dependent)* in which case density and viscosity vary with temperature.

Important: To specify your own liquid with your own physical properties, first enter a name that does not appear in the dropdown list!

		Primary Liquid Density (kg/m³)	Goopy Fluid							
			1000							
		Viscosity Model	Newtonian 🗸							
		Consistency (mPa.s ⁿ)	Newtonian							
_		Flow Index n"	Power Law Yield Stress							
	Newtonian, Power Law ("pseudo-plastic"), and									
	Yield Stress ("Herschel-Bulkley") viscosity									
	models are available									
	Newtonian Fluid: μ_{γ} = constant (enter in mPa.s = cP)									
	Powe	er Law Fluid: $\mu_{\gamma} = \mu_{\gamma=1}$	$\gamma_{\rm s} \gamma^{\rm (n-1)} = \mathbf{k} \gamma^{\rm (n-1)}$							
	Yield	Stress Fluid: $\mu_{\gamma} = \tau_{\text{yield}}$ Fluid is stagnant if τ								
	μ_{γ}	Viscosity at she	ear rate γ (1/s)							
	$\mu_{\gamma=1/s}$	Viscosity at she	ear rate $\gamma = 1$ (1/s)							
	k		nter in mPa.s ⁿ = cP.s ⁽ⁿ⁻¹⁾)							
	n	Flow Index								
	τ_{yield}	Yield Stress (enter in Pa or Dyne/cm ²)								
	τ	Shear Stress (P	a)							

Primary Liquid Density (kg/m³) Viscosity Model Consistency (mPa.s ⁿ) Flow Index n'' Yield Stress (Pa)	Goopy Fluid • 1000 • Yield Stress • 12 • 0.8 • 3.4 •
Safety You can select safety information from the dropdown list or enter your own text Volume Percentage 2nd Liquid Droplet Diameter (m)	▼ No Safety Concerns Acid (Low pH) Base (High pH) Biohazard Controlled Substance Corrosive Environmental Hazard Explosive Flammable Health Hazard Neurotoxic Poisonous Safety Hazard Toxic
Dispersion Time (h:m:s)	



	If there is insufficient agitation w	ith a yield stress fluid, a cavern may	
🛠 KaeMix	form around the impeller in which fluid moves, while fluid outside the		
FILE SEND EDIT PROCESS DESIGN PERFORMANCE CREATE TOOLS SETTINGS			
Yield stress fluid specified Baffles Solids Particles		calculates the approximate cavern size	
		Blending Suspension Gas Dispersion HT Rate Power Dimensionless	
Primary Liquid goop	Power Draw	Blending M-Scale 0/10 (None)	
Density (kg/m³)	Total Power (kW) 0.3098	Bulk Fluid Vel. (m/s) 2.94E-03 Total Flow (m³/s) 0.0512	
Viscosity Model Yield Stress	Main Drive 3kW @ 190RPM % Loaded 10.3%	Turnovers / Minute 4.19	
Consistency (mPa.s ⁿ) 10000	Main Impeller 1: HFoil-Narrow	Cavern Volume (%) 20-30%	
Flow Index n 1	% Total Power 100.0	P/V (kW/m ³) 0.423	
Yield Stress (Pa)	Reynolds Re 49.5		
Effective Viscosity (mPa.s) 10316	Flow Regime Laminar		
Safety No Safety Concerns	Power Po 0.93	If covers values is loss than 100% of the	
	Shear Rate (1/s) 31.67	If cavern volume is less than 100% of the	
	operating volume, M-Scale will be 0/10		
		and no other performance information	
	Yield stress fluid. Cavern size < 100%	will be calculated. Only when agitation is	
	Calculated results may not be valid.	increased so that cavern volume = 100%	
		will other information be calculated	
		te outline of cavern is shown if	
	Settings \rightarrow	Drawing with Colors is OFF	
	Cavern ligh	t-blue and stagnant liquid pale-yellow	
		\rightarrow Drawing with Colors is ON	
		/ Drawing with Colors is Olv	

© 2025 KaeMix LLC

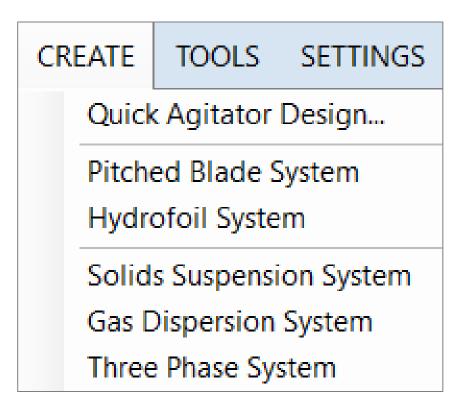
Design Tools

Quick Agitator Design

- After specifying the vessel, process, and liquids, the fastest way to create an initial agitator design is using the Quick Agitator Design panel
- Specify the impeller system and required M-Scale, click Design, and KaeMix will design the agitator

8 8	≈∥≡	🎤 Quick Agit	ator Design	
Heat	Gas Flow	Sp <mark>arger</mark> So	olids Partic	les
🛠 KaeMix Quick Agitator Design				×
Agitator Requirements			-	
Minimum Blending I	M-Scale 3 (Moderate)	•		
Impeller	System All Hydrofoil S	System •	•	
Impeller System				
O Pitched Blade	• Hydrofoil	 Solids Suspension 	O Gas Dispersion	O Three Phase
			Cancel	Design

Tools Menu


- *Reposition Impellers:* spaces impellers over vessel height
- Scale-Up: opens the Scale-Up panel
- Load Motor: adjust speed and diameter to load motor
- Impeller Speed: adjusts speed only to load the motor
- Impeller Speed (Standard): sets the highest standard RPM that does not overload the motor
- Resize Impellers: adjusts diameters to load motor
- Resize Motors: changes motor size to match impeller power draw
- Drives Top Entering: changes bottom entering drive to top entering
- Drives Bottom Entering: changes top entering drive to bottom entering

то	OLS	SETTINGS	WINDO	w	HELP	
21	Reposition Impellers					
	Scale-Up					
÷.	Load Motor					
e	Impeller Speed					
\odot	Impeller Speed (Standard)					
₩	Resize Impellers					
(Resize Motors					
	Resize Motors - All Designs					
	Driv	es - Top Ente	ring			
	Drives - Top Entering - All Designs					
	Drives - Bottom Entering					
	Driv	es - Bottom E	Intering -	All I	Designs	

"All Designs" means that this change is applied to all designs in the file, not just to the active design. It is recommended to save your file before issuing these commands

Create Menu

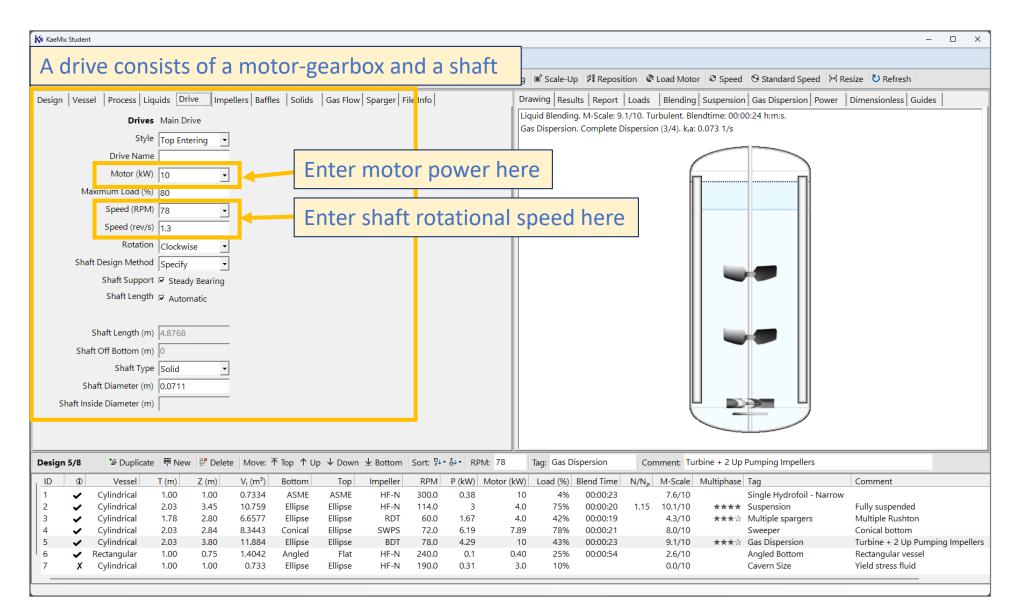
- Create menu: useful to quickly create an impeller system before manually refining the design
- These commands duplicate the active design and replace the impeller and baffle system with the system selected from the list

Scale-Up

- Tools \rightarrow Scale-Up
- You can scale up or down
- You can change the aspect ratio of the vessel by modifying the ratio between Straight Side and Vessel Diameter
- Available Scale Up criteria:
 - Equal Blend Time
 - Equal Froude Number
 - Equal Mixing Scale (M-Scale)
 - Equal Power per Volume
 - Equal Reynolds Number
 - Equal Shear Rates
 - Equal Tip Speed
 - Equal Torque per Volume

• Clicking Scale-Up adds a new design

×			
Scale-Up Criterion Equal Tip Speed			

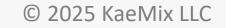

🗱 KaeMix Scale-Up	×
Scale-Up Parameters	
Vessel Diameter (m) 1	New Diameter (m) 2
Straight Side / Diameter 1	New Straight Side / Diameter 1
Operating Pressure (Atm) 1	New Pressure (Atm) 1
Scale-Up Criterio	Fqual Tip Speed
	Equal Blend Time Equal Froude Number Equal Mixing Scale Equal Power per Volume Equal Reynolds Number Equal Shear Rates
	Equal Tip Speed Equal Torque per Volume

Drives and Shafts

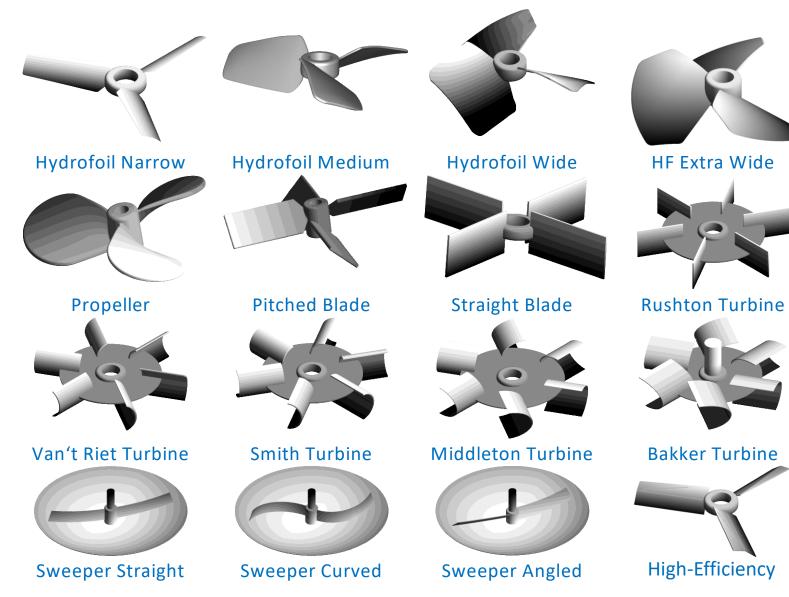
Drives

Drives – Shaft Design

🛠 KaeMix Student	
FILE SEND EDIT PROCESS DESIGN PERFORMANCE	
🗃 Open 🗧 Save 🗉 File Info 🤊 < 🗗 🏛 🏧 Units 🕶 🕮	
Design Vessel Process Liquids Drive Impellers Baffles	
Drives Main Drive	
Style Top Entering 💌	
Drive Name	
Motor (kW) 10 -	
Maximum Load (%) 80	
Speed (RPM) 180 -	
Speed (rev/s) 3	
Rotation Clockwise -	
Shaft Design 🗖 Automatic	S
Shaft Support 🔽 Steady Bearing	L
Shaft Length IF Automatic	
Shaft Length (m) 1.3387	
Shaft Off Bottom (m)	
Shaft Type Solid 🗸	
Shaft Diameter (m) 0.027	
Shaft Inside Diameter (m)	

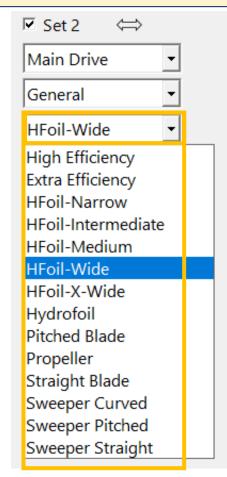

Shaft Design can be set to Automatic or the shaft can be specified by the user.

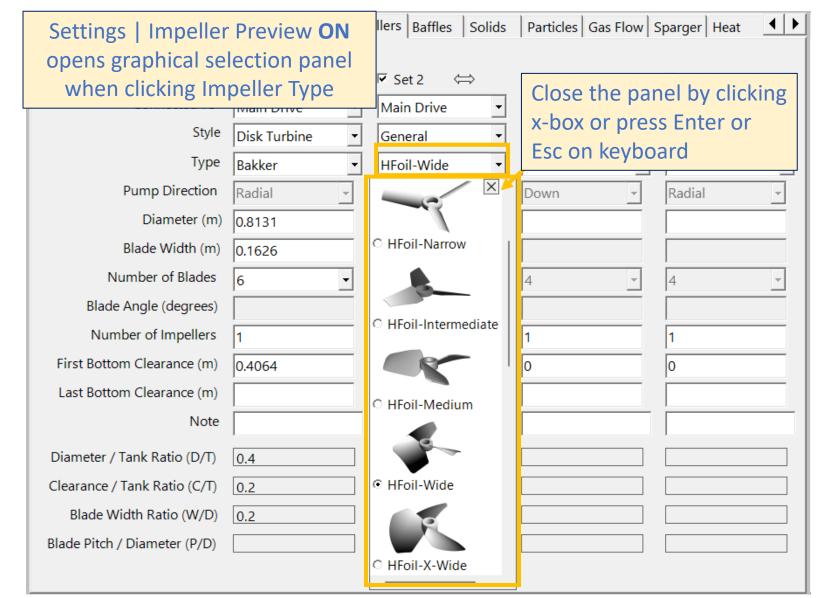
Shafts can be solid or hollow.


Shaft Length is calculated as follows: Length = Top Head Depth + Vessel Straight Side + Bottom Depth - Shaft Off Bottom

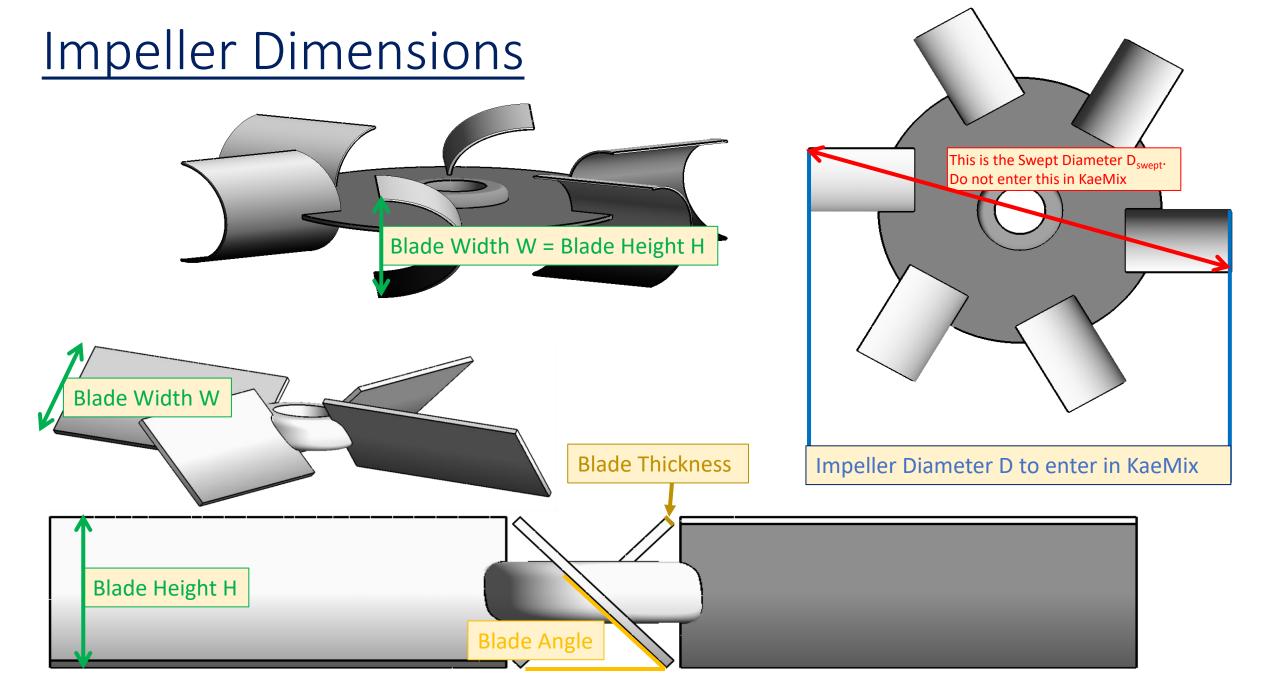
Impellers

Available Impellers

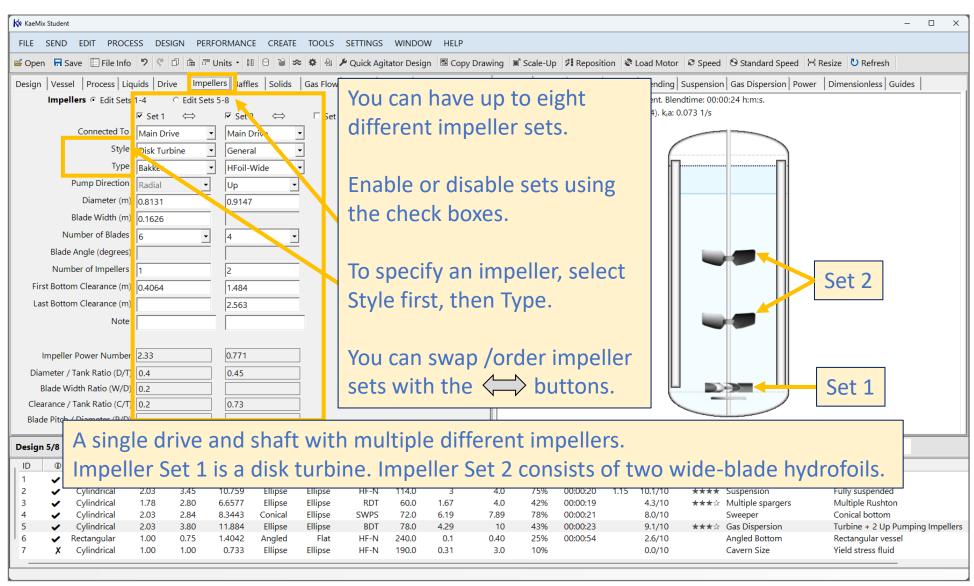



KaeMix Student User Guide

© 2025 KaeMix LLC


Select Impeller Type

Settings | Impeller Preview **OFF** Standard dropdown when clicking Impeller Type

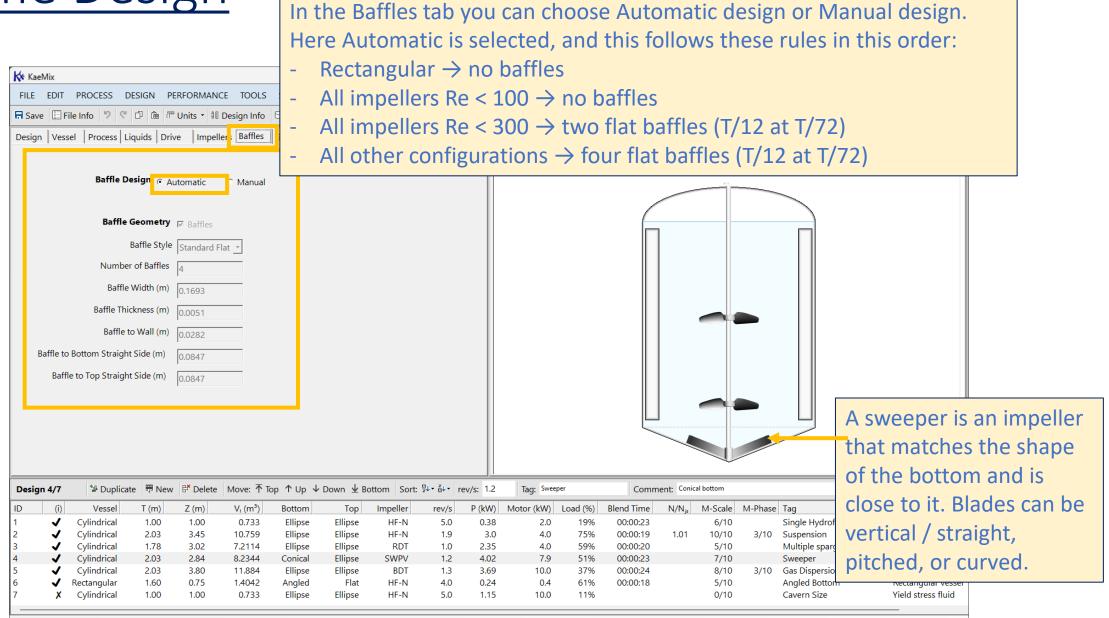


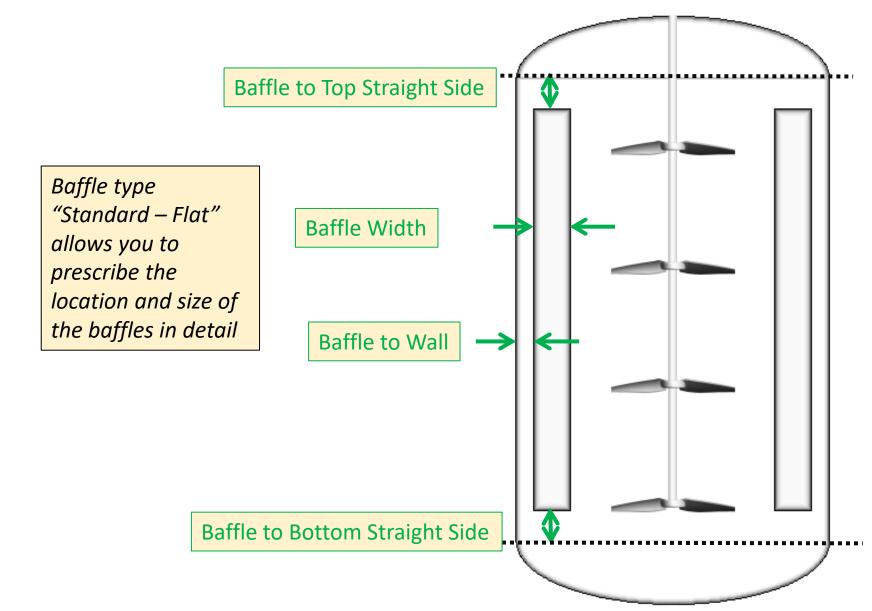
© 2025 KaeMix LLC

Multiple Impellers of Different Type

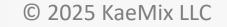


Multiple Impellers of Same Type

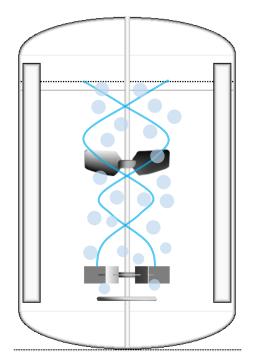

😽 KaeMix		– 🗆 X
FILE EDIT PROCESS DESIGN PERFORMAN	INCE TOOLS SETTINGS WINDOW HELP	
Single Drive	"Units · 18 0 1 One cat of four impallance connected to Main Drive	U Refresh
	bellers Baffles Head One set of four impellers connected to Main Drive televise Tele	Dimensionless Guides
Drives Main Drive	id Blending. M-Scale: 9.7/10. Turbulent. Blendtime: 00:00:18 h:m:s.	
Style Top Entering 👻	Impellers	
Drive Name		
Motor (kW) 10 -		
Maximum Load (%) 80	Type HFoil-Narrow •	
Speed (RPM) 120 -	Diameter (m) 0.8128	
Speed (rev/s) 2	Pump Direction Down	
Rotation Clockwise 💌	Number of Blades 3	
Mounting Height (m) 0	Blade Width (m)	
Shaft Support 🗖 Steady Bearing	Blade Angle (degrees)	
Shaft Design	Number of Impellers 4	
Shaft Diameter (m) 0.02 Shaft Off Bottom (m) 0.4064	First Bottom Clearance (m) 0.4064	
Offcenter distance (m) 0	Last Bottom Clearance (m) 2.54	
	Note	
	Diameter / Tank Ratio (D/T) 0.4	
	Clearance / Tank Ratio (C/T) 0.2	
	Blade Width Ratio (W/D)	
Design 3/11 ta Duplicate The New P* Delete	te Tag: Suspension Comment: Fully Suspended	
	lers are specified as well as the off-bottom clearance of the first 🚽 🖻	ent
² V ^{cylil} and last imr	peller. The impellers are then equally spaced along the shaft.	
	pener. The impeners are then equally spaced doing the shart.	ispended
5 Cyli 6 ✔ Recta		
⁷ ^{Cyli} Bottom clea	arance is defined as the vertical distance from the bottom of the	
impelier to	the lowest part in the vessel bottom.	


Baffles

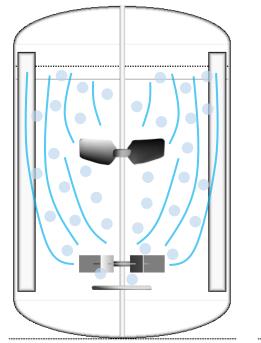
Baffle Design



Baffle Design – Manual


Gas Dispersion

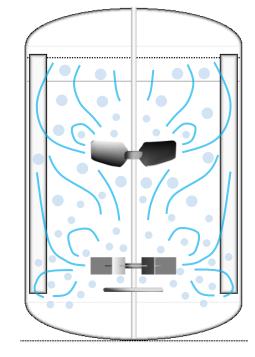
<u>Gas Dispersion – Flow Regimes</u>


Rated from zero stars ☆☆☆☆ to four stars ★★★

Increasing impeller speed N

값값값값 Flooded (0/4) Gas rises straight through the impellers

Avoid this flow regime

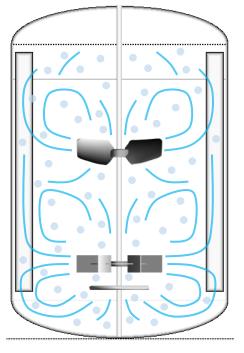

★☆☆☆ Coarse Dispersion (1/4) Impellers not flooded. Some gas reaches vessel walls, especially near upper impellers

Applications that are not mass transfer limited

★★☆☆ Dispersing (2/4) Gas is dispersed towards the vessel wall, but there is little or no recirculation

Reactors requiring moderate degree of mass transfer

KaeMix Student User Guide



Complete Dispersion (3/4)

Gas is dispersed and there is

gas recirculation

Fine Dispersion (4/4) Gas dispersed and substantial recirculation. Small bubble size aids mass transfer

Suitable for critical gas-liquid reactors where rapid mass transfer is required

© 2025 KaeMix LLC

Gas Dispersion

Enable gas dispersion here PERFORMANCE TOOLS SETTINGS WINDOW HELP Performance definition of the set of	ent	– • ×
Image: Second Secon	egas Performance tools settings window help	
Image: Portion of Gas Dispersion Sparger Notes in the mining integration of Gas Dispersion in Power in the mining integration of Gas Dispersion in Power in the mining integration of Gas Dispersion in Power in the mining integration of Gas Dispersion in Power in the mining integration of Gas Dispersion in Power in the mining integration of Gas Dispersion in the mining integration of Gas Dispersion in Power in the mining integration of Gas Dispersion in Power in the mining integration of Gas Dispersion in Power in the mining integration of Gas Dispersion in Power in the mining integration of Gas Dispersion in Power in the mining integration of Gas Dispersion in Power in the mining integration of Gas Dispersion in Power integration of Gas Dispersion i	🦿 🖓 💼 🕮 Units 🔹 🏥 🗢 🎽 🌫 🗡 Quick Agitator Design 🖾 Copy Drawing 📑 Scale-Up 🗯 Reposition 💐	Load Motor Speed Standard Speed H Resize Refresh
Process Gas Air Mole Fraction O2 0.2095 Gas Flow Unit Vol/Vol/Minute (VVM) Molecular Weight 28.97 Diffusion Coeff. (m/s ⁴) 2.05E-09 Gas C _p /C _r ratio 1.4 Coalescence Behavior Non-Coalescing Viscosity model (ka) Liquid (ka \alpha viscosity^{-1/2}) Gas Dispersion Gas Dispersion M-Phase: 3.0/10. Dispersing. ka: 0.07 Sparger Design Gas Dispersion	On nere Drive Impellers Baffles Gas Flow Sparger Solids Particles File Info Drawing Results Report Loa	Loads Blending Suspension Gas Dispersion Power Dimensionless Guides
Process Gas Air Mole Fraction O₂ 0.2095 Gas Flow Unit Vol/Vol/Minute (VVM) Molecular Weight 28.97 Gas Flow 1 Diffusion Coeff. (m/s ²) 2.05E-09 Gas C _p /C _v ratio 1.4 Style Style Coalescence Behavior Non-Coalescing ✓ Style Style Viscosity model (ka) Liquid (k,a ∝ viscosity ^{-1/2}) ✓ Sparger Diameter (m) 0.6096	spersion sparger results	
Gas Flow Unit Vol/Vol/Minute (VVM) Gas Flow 1 Gas Flow 1 Gas C _p /C _v , ratio 1.4 Coalescence Behavior Non-Coalescing Viscosity model (k _a) Liquid (k _a a viscosity ^{-1/2}) Liquid (k _a a viscosity ^{-1/2}) Viscosity model (k _a)		Sparger Design
Gas Flow 1 Gas C _p /C _v ratio 1.4 Coalescence Behavior Non-Coalescing Viscosity model (k,a) Liquid (k,a \u00ed viscosity^{-1/2})		
Gas C _p /C _v ratio 1.4 Coalescence Behavior Non-Coalescing Viscosity model (k,a) Liquid (k,a \u03c6 viscosity^{-1/2})		
Style Ringsparger Coalescence Behavior Non-Coalescing Viscosity model (k,a) Liquid (k,a \u03c0 viscosity^{-1/2}) Sparger Diameter (m) 0 6096		Gas Spargers 🔽 Set 1 🗆 Set 2
Coalescence Behavior Non-Coalescing Viscosity model (k,a) Liquid (k,a \u03b2 viscosity^{-1/2}) Sparger Diameter (m) 0.6096		Style Ringsparger Gas Dispersion Results
Sparger Diameter (m) Gas Dispersion Gas Dispersion		
Safety No Safety Concerns	sity model (k,a) Liquid (k,a ∝ viscosity ^{-1/2}) v S	Sparger Diameter (m) Geoge Gas Dispersion
Number of Holes Main Gas Dispersion Impeller 1: Bakker	Safety No Safety Concerns	
Gas Flow Rate Hole Diameter (m) Dispersing Mass Flow (kg/s) 0.2912 Actual Conditions (m³/s) 0.1677		Hole Diameter (m) Flow Regime Dispersing
Mass Flow (kg/hr) 1048.3 Standard Conditions (m ³ /s) 0.2377 Gas Holdup	Mass Flow (kg/hr) 1048.3 Standard Conditions (m ³ /s) 0.2377	Direction Down - Gas Holdup
Number of Spargers Process / Actual Conditions 12.5%		Number of Spargers Process / Actual Conditions 12.5%
Open the Gas Flow tab to enter the gas Off Bottom First Sparger (m) 0.2845 Water / Standard Conditions 12.4%	oen the Gas Flow tab to enter the gas	ottom First Sparger (m) 0 2845 Water / Standard Conditions 12.4%
dispersion related information. Here you Off Bottom Last Sparger (m) Mass Transfer Coefficient (1/s)	spersion related information. Here you	
can also accoss the Sparger Design and Cas	n also access the Sparger Design and Cas	
Det Can also access the Sparger Design and Gas //s 1.3 Tag: 6a Offcenter Distance (m) k _i a Process / Actual Conditions 0.0665		Concenter Distance (m) k _i a Process / Actual Conditions 0.0665
ID Dispersion Results tab. Motor (kW) Load k _i a Water / Standard Conditions 0.0774	Spersion Results tab.	
3 Cylindrical 1.78 3.02 7.2114 Ellipse Ellipse RDI 1.0 2.35 4.0 59% 00:00:20 4.1/10 Multiple spargers	Cylindrical 1.78 3.02 7.2114 Ellipse Ellipse RDI 1.0 2.35 4.0 59% 00:00:20	20 4.1/10 Multiple spargers
5 🗸 Cylindrical 2.03 3.80 11.884 Ellipse Ellipse BDT 1.3 4.29 10.0 43% 00:00:24 7.9/10 3.0/10 Gas Dispersion Turbine + 2 Up Pumping Impeller		24 7.9/10 3.0/10 Gas Dispersion Turbine + 2 Up Pumping Impeller
6 ✓ Rectangular 1.60 0.75 1.4042 Angled Flat HF-N 4.0 0.3 0.4 76% 00:00:18 5.1/10 Angled Bottom Rectangular vessel 7 X Cylindrical 1.00 0.733 Ellipse HF-N 7.0 2.18 25.0 9% 00:12:13 0.0/10 Cavern Size Yield stress fluid	5	
8 🗸 Cylindrical 1.00 1.00 0.733 Ellipse Ellipse HF-N 7.0 19.8 25.0 79% 00:01:17 10/10 Cavern Size Yield stress fluid		

Gas Dispersion – Process Gas

	😽 KaeMix Student								-	
	FILE	τοο	LS SETTINGS WINDOW HE	ELP						
	Specify p	process gas	🛙 🖯 🗑 🗢 🎤 Quick Agitator D	Design 🖾 Copy Drawing	Cale-Up	Penecition Dead M	otor Consol Contact Speed Consol Consol	Pofros	sh	
	Design Vessel Process Li	quids Drive Impellers Baffle	es Gas Flow Sparger Solids	Particles File Info	Drawing Res	Process Gas	Air	-	nless Guide	es
	🖂 Gas Dispersion		S	parger Results	Liquid Blendi Gas Dispersio		Acetylene (C ₂ H ₂)	1		
		Acetylene (C ₂ H ₂)					Air			
	Process Gas	Air	Mole Fraction O ₂				Air (O₂ Enriched)			
	Gas Flow Unit	Air (O₂ Enriched) Ammonia (NH₃)	Molecular Weight	28.97			Ammonia (NH₃)			
	Gas Flow	Argon (Ar) Carbon Dioxide (CO₂)	Diffusion Coeff. (m/s²)	2.05E-09			Argon (Ar)			
	Gas C _p /C _v ratio	Carbon Monoxide (CO) Chloroform (CHCl _a)					Carbon Dioxide (CO₂)			
	Coalescence Behavior	Chloromethane (CH₃Cl)					Carbon Monoxide (CO)			
	Viscosity model (k _i a)	Ethane (C₂H₅) Ethanol (C₂H₅OH)					Chloroform (CHCl₃)			
	Safety	Ethylene (C₂H₄) Helium (He)					Chloromethane (CH₃Cl)			
		Hydrogen (H₂) Hydrogen Chloride (HCl)					Ethane (C₂H₀)			
	Gas Flow Rate	Methane (CH ₄) Methanol (CH ₃ OH)					Ethanol (C₂H₅OH)			
	Mass Flow	Nitric Oxide (NO)	Actual Conditions (m ³ /s) 0.16	77			Ethylene (C ₂ H ₄)			
	Mass Flow (Nitrogen (N₂) Nitrous Oxide (N₂O)	Standard Conditions (m ³ /s) 0.23				Helium (He)			
	Vol/Vol/Minute (Oxygen (O₂) Sulfur Dioxide (SO₂)	Superficial Velocity (m/s) 0.06	11			Hydrogen (H ₂)			
		Toluene (C ₇ H ₈)					Hydrogen Chloride (HCl)			
							Methane (CH₄)			
	If process ga	as is selected f	rom dropdow	n list 🗧			Methanol (CH₃OH)			
				s í	1.3 Tag: ^{Ga}		Nitric Oxide (NO)			
	the physical	properties an	e set automat		tor (kW) Load 4.0 7		Nitrogen (N ₂)		ent spended	
					4.0 5		Nitrous Oxide (N ₂ O)	e	Rushton	
	Important:	To specify you	r own propert	ies	7.9 8 10.0 4		Oxygen (O ₂) Sulfur Dioxide (SO ₂)		+ 2 Up Pur	nping Impelle
					0.4 7 25.0		Toluene (C ₇ H ₈)		jular vessel ress fluid	
	first type in	a name for th	e process gas t	that	25.0 25.0 7				ress fluid	
	does not ap	pear in the dr	opdown list!							
- 1		-	-					-		

Gas Dispersion – Flow Rate (1/2)

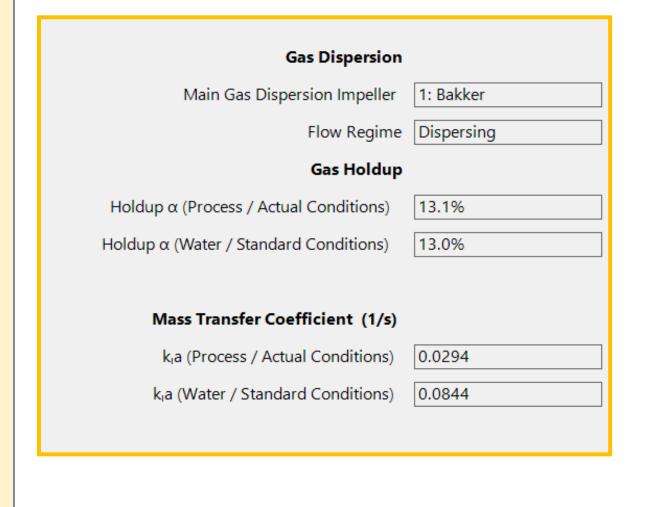
Specify gas flow PERFORMANCE TOOLS SETTINGS WINDOW HELP	- D X
🖆 Open 🛱 Save 🗄 File Info ಶ < 🗗 🏦 🕮 Units 🔹 🕮 😁 Quick Agitator Design 🖾 Copy Drawing 🖃 Scale-Up	p 🕅 Reposition 🗟 Load Motor 😂 Speed 🕹 Standard Speed 🔄 Resize 🖑 Refresh
Design Vessel Process Liquids Drive Impellers Baffles Gas Flow Sparger Solids Particles File Info Drawing I	Results Report Loads Blending Suspension Gas Dispersion Power Dimensionless Guides
✓ Gas Dispersion	nding. M-Scale: 7.9/10. Turbulent. Blendtime: 00:00:25 h:m:s.
To enter the gas flow r	rate, first select
Process Gas Air -	
Gas Flow Unit Vol/Vol/Minute (VVM) - the Gas Flow Unit, the	en enter the Gas
Gas Flow 1 Diffu Flow in that unit	
Coalescence Behavior	
Viscosity model (k,a) Liquid (k,a \propto viscosity ^{-1/2})	Specify bubble coalescence behavior.
Safety No Safety Concerns	
Survey into salety concerns	If unsure, select <i>coalescing</i> .
Gas Flow Rate	Coalescence Behavior
Mass Flow (kg/s) 0.2912 Actual Conditions (m³/s) 0.1577	Coalescing
For viscosity model select Liquid Fermentation Broth	Clean Water
For viscosity model select <i>Liquid</i> , <i>Fermentation Broth</i> ,	Coalescing
or Fine Suspension as appropriate.	Non-Coalescing
	Electrolyte-Water
<i>None</i> is for situations where you specified the value of the	
diffusion coefficient that you want to be used without	Contraction Contract Turking a 2110 Remains Inneller
	Viscosity model ($k_i a$) Liquid ($k_i a \propto viscosity^{-1/2}$)
additional corrections.	
Note: if both the process liquid and the process gas are selected	Liquid (k₁a ∝ viscosity ^{-1/2}) Fine Suspension umping Impeller
Note: if both the process liquid and the process gas are selected	Fine Suspension umping Impeller
from the dropdown lists then the viscosity model setting is	None (Diff. Coeff. effect only)
disabled and KaeMix automatically selects the best model	
uisableu anu kaelviik automatically selects the best model	

Gas Dispersion - Flow Rate (2/2)

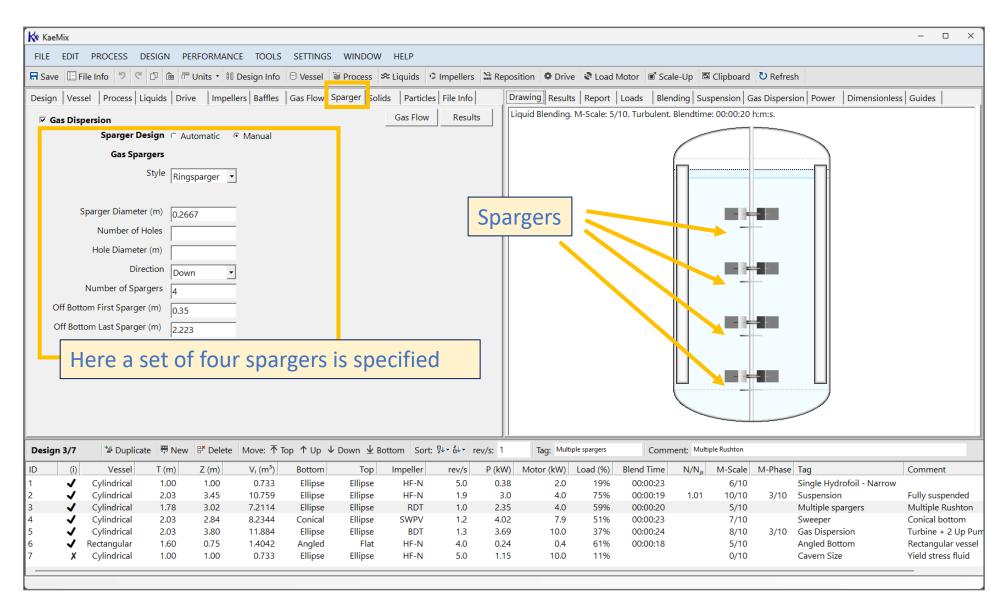
Mass Flow (kg/s) 0.2824	Actual Conditions (m ³ /s) 0.1714	
Mass Flow (kg/hr) 1016.7	Standard Conditions (m³/s) 0.2305	
Vol/Vol/Minute (VVM) 1	Superficial Velocity (m/s) 0.0611	
VVM and superficial gas velocities are calculated based on average gas temperature and average pressure	Actual Conditions are defined as the temperature and the pressure at the bottom	Tip: it is best to enter gas flow as a mass flow rate because not
VVM is gas volumetric flow rate / operating volume per minute	Standard Conditions mean the International Standard Metric Conditions: 15°C / 59°F at 1 Atm	everyone uses the same definitions for standard or actual conditions used in volumetric flow rate calculations
Gas flow rates in USA units are shown if KaeMix is set to USA units	Here, CFM is Cubic Feet per Minute. Standard is 59°F at 1 Atm	
Gas Flow Rate		
Mass Flow (lb/s) 0.6226	Actual CFM 363.25	
Mass Flow (lb/hr) 2241.4	Standard CFM 488.41	
Vol/Vol/Minute (VVM) 1	Superficial Velocity (ft/s) 0.2004	

© 2025 KaeMix LLC

Gas Dispersion - Results

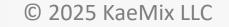

Main impeller: the lowest impeller that is directly gassed

Flow Regime: *Flooded* means the gas rises through the impeller system without being driven to the wall. *Coarse Dispersion* means gas is driven direction vessel wall but may not completely reach it and there is no recirculation. *Dispersing* means that gas is driven to the vessel wall and some smaller bubbles may recirculate. *Complete dispersion* means that gas is also driven down at the vessel wall and part of the gas recirculates through the impeller system

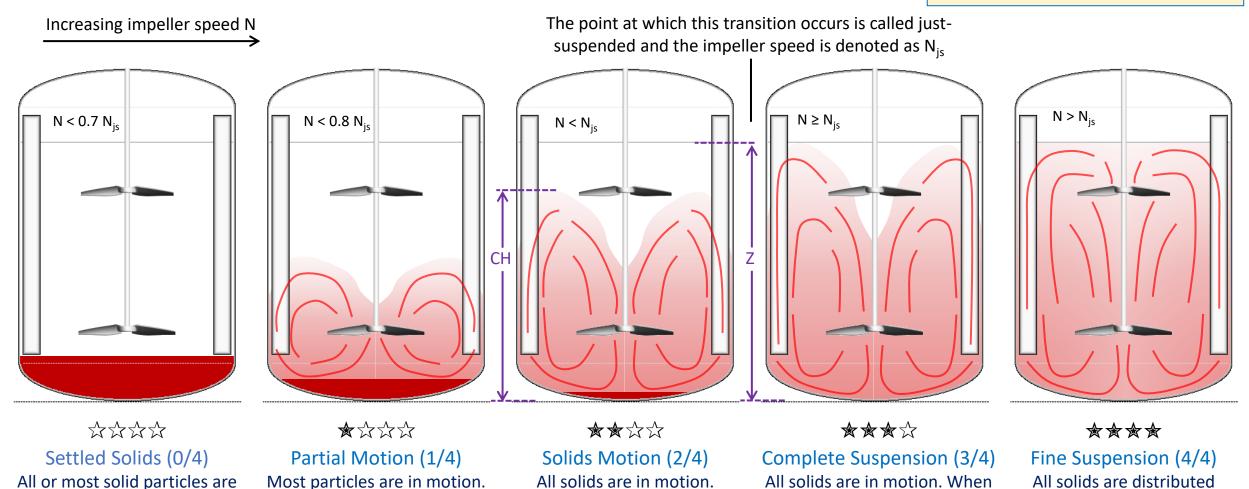

Gas holdup and mass transfer coefficient k_la are shown for the process / actual conditions; for water / standard conditions (15°C/ 59°F and atmospheric pressure); and for the custom correlations

The following is not included in holdup and k_la calculations:
O Power input by impellers below the lowest sparger
O Gas input from spargers above the highest impeller
O Impellers and spargers located above the user specified operating level (which is ungassed)

Dip tube spargers work less well than other spargers and a reduced efficiency is assigned to them


Sparger Design

KaeMix Student User Guide



Solids Suspension

Solids Suspension – Flow Regimes

Rated from zero stars ☆☆☆☆ to four stars ★★★

settled on the bottom

KaeMix warning: Operating at

N < 0.8*N*_{is} is not recommended

KaeMix reports percentage of solids that are unsuspended

There are still some stagnant

solids on the bottom

KaeMix reports cloud height CH/Z. Cloud height depends on impeller placement, especially in tall vessels

deposited on the bottom, solids

stay there only briefly

© 2025 KaeMix LLC

Some solids are moving

around on the bottom

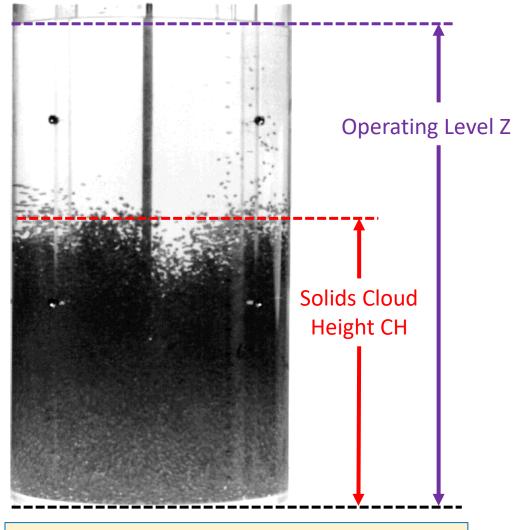
55

throughout the vessel

Solids Suspension

	😽 KaeMix	Student																	-	
	FILE	SEND	EDIT PRO	CESS DE	SIGN PERF	ORMANCE	E TOOLS	SETTINGS	WINDOW	/ HELP										
-	💕 Open	🖬 Sa	ave 🔲 File Ir	fo 🤊 🕫	0 🖻 📅	Units •	8 8 *	* 🌣 🕹 🆊	Quick Agit	ator Desig	gn 🖾 Co	py Drawing	■ Scale-U	p 🕫 Reposit	ion 🛛 🗟 I	Load Moto	r 🔍 Spe	ed 🔊 Standard Speed 🛛	* Resize 🖸 Refresh	
	Design	Vesse	Process	Liquids Dr	ive Impel	lers Baffle	Solids	G Is Flow	Sparger Fil	e Info		Dra	wing Resu	Its Report	Loads	Blending	Suspensi	ion Gas Dispersion Powe	r Dimensionless Guide	5
	⊡ So	lids Su	spension						Results Liquid Blending. M-Scale: 9.2/10. Turbulent. Ble Solids Suspension. M-Phase: 4.0/10. 100% Susp											
				Solids D	escription	Solid Parti	cles					- 50	ias Suspens	ion. M-Phase:	4.0/10.	100% Susp	ended. Ci	H/Z: 97%		
Enable	e so	lids	5	Soli	ds Material	PET		•	On	on t	ho S		tab	to ont	tor				`	
suspens	ion	ho	ro	Solids Dens	ity (kg/m³)	1380			Op	Open the Solids tab to enter										
suspens			ie			1.73E-03		•	the	sol	ids s	uspe	nsio	n rela	ted					
					ng Velocity	Specify		•												
			Particle Free			0.0905					alio	п. пе	re yo	ou car	I dis	50				
				Settling Velo		0.0719			acc	ess	the	Susp	ensi	on Res	sult	S	_			
Solids Weight / Mixture Weight (%)																				
	Solids Weight / Liquid Weight (%) 11.1 Solids Volume / Operating Volume (%) 7.45								tab	•							-			
		30		/ixture Dens		7.45											_			
						1106.3			Tin	• na	rticl	e dia	mete	er can	he	•				
					0 . 0.	No Safety	Concerns	•	-	1.1					NC	•	-			
						prio barety	concerns		• er	nter	ed c	lirect	ly,							
									• 01	r cal	cula	ted f	rom	mesh	ρ	σ				
															·	U /				
									er	nter	Size	e as ":	100 I	nesh'	′ or				/	
									"1		mes	h″								
	Design	2/8	📲 Duplic	ate 🖷 New	/ ₽ [¥] Delete	Move: 1	⊽Тор ↑ Uр	↓ Down		., + .		<u> </u>					uspended			
Ĩ	ID	٢	Vessel	T (m)	Z (m)	V₁ (m³)	Bottom	Тор	Impeller	RPM		Motor (kW)		Blend Time	N/N _{js}	M-Scale	M-Phase	5	Comment	
	1 2	3	Cylindrical Cylindrical	1.00 2.03	1.00 3.45	0.7303 10.759	ASME Ellipse	ASME Ellipse	HF-N HF-N	300.0 114.0	0.38 3.0	10.0 4.0	4% 75%	00:00:23	1.15	7.6/10 9.2/10	4.0/10	Single Hydrofoil - Narrow Suspension	Fully suspended	
	3	1	Cylindrical	1.78	2.80	6.6577	Ellipse	Ellipse	RDT	60.0	1.67	4.0	42%	00:00:19		3.8/10	3.8/10	Multiple spargers	Multiple Rushton	
	4 5	v	Cylindrical Cylindrical	2.03 2.03	2.84 3.80	8.2344 11.884	Conical Ellipse	Ellipse Ellipse	SWPS BDT	72.0 78.0	6.19 4.29	7.9 10.0	78% 43%	00:00:22 00:00:24		7.2/10 7.9/10	3.0/10	Sweeper Gas Dispersion	Conical bottom Turbine + 2 Up Pumpin	g Impellers
	6	✓	Rectangular	1.60	0.75	1.4042	Angled	Flat	HF-N	240.0	0.1	0.4	25%	00:00:54		2.6/10	-	Angled Bottom	Rectangular vessel	
L. L																				

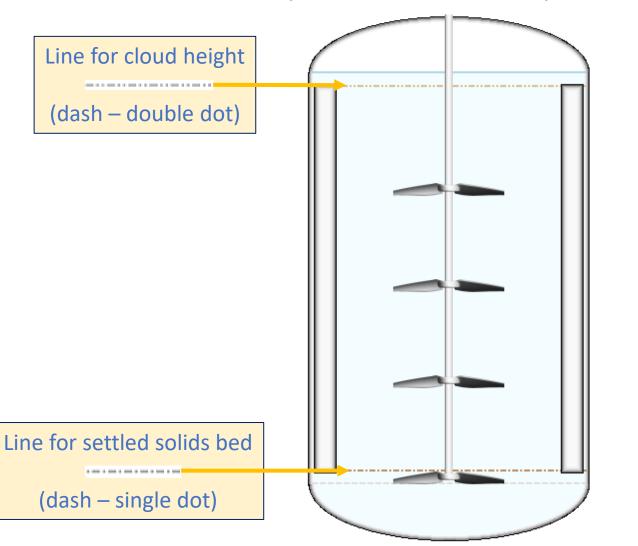
Solids Suspension Results (1/3)


- N_{is} is the just-suspended speed
- Main impeller is name of impeller that contributes most to the off-bottom suspension process
- Three methods are used to calculate this:
 - 1. N_{js} GMB: Grenville-Mak-Brown (2015). Down pumping axial flow impellers. Scaleup exponent is -0.67
 - 2. N_{js} CFM: Corpstein-Fasano-Myers (1994). Both down and up pumping axial flow impellers. Scaleup exponent depends on particle properties.
 - 3. N_{js} Zwietering: Zwietering (1958). Radial and axial flow impellers. Scaleup exponent is -0.85.
- N_{is} is reported as the average of these calculations
- The percentage of unsuspended (settled on the bottom) solids, the percentage of suspended solids, and the Cloud Height / Z (operating level) ratio are reported also for conditions where these can be calculated

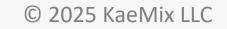
Solids Suspension Results

lain Suspens	ion Impeller	Ungassed 1: HFoil-Narrow							
	N _{js} (RPM)	99.1							
	N _{js} (rev/s)	1.65							
	N/N_{js}	1.21							
	N (RPM)	120							
	N (rev/s)	2.00							
	$P_{js}\left(kW\right)$	1.9708							
L	Jnsuspended	0%							
	Suspended	100%							
Clou	ıd Height / Z	97%							

Solids Suspension Results (2/3)


- The Cloud Height / Z (operating level) ratio is reported also for conditions where this can be calculated
- A cloud height CH/Z of 100% means that the solids cloud reaches the liquid surface
 - Note that this does not mean that the solids are 100% uniformly distributed throughout the liquid: there may still be concentration gradients
- Cloud height calculations are based on Hicks M.T., Myers K.J., Bakker A. (1997) *Cloud Height in Solids Suspension Agitation*, Chem. Eng. Comm., Vol. 160, pp 137-155.

Solids Suspension Results (3/3)


- If Settings | Draw Solids Levels is On then KaeMix will draw lines at the predicted cloud height and at the height of the solids bed if all solids were settled
- Limitations: only for cylindrical and rectangular vessels for which solids suspension calculations can be performed. Cloud height only drawn if able to be calculated. If CH/Z = 100% then operating level and cloud height are the same and line for cloud height may not be visible

Liquid Blending. M-Scale: 8.2/10. Turbulent. Blendtime: 00:00:25 h:m:s. Solids Suspension. M-Phase: 4.0/10. 100% Suspended. CH/Z: 97%

Results

Blend Time

K*	KaeMix																	- 0	ı x
FII	.E EDIT	PROCESS D	ESIGN PE	RFORMAN	CE TOOLS	SETTINGS	WINDOW	HELP											
E 9	Save 🔲 F	ile Info 🦻 ୯		Units -	Design Info	⊖ Vessel	Process	≈ Liquids 🛛	Impeller:	s 🔛 Rep	osition 🏼 🏶 Driv	/e 💐 Load	Motor	ြိ Scale-Up	🖾 Clipboard	ひ Refresh	1		
Des	ign Ves	sel Process Li	iquids Driv	/e Impell	lers Baffles	Gas Flow	Sparger Sol	ds Particles	s File Info		Drawing Resul	ts Report	Loads	Blending	uspension G	Gas Dispersio	on Power Dimensionles	s Guides	
		Primary	y Liquid Fe	ermentation	Broth	•													
			(kg/m³) 1																
		Viscosity									Blend	Time (h:m:	s)						
		Viscosity at 1/s	·	lewtonian		<u> </u>						Uniformi	ty Unga	ssed	Gassed				
		viscosity at 1/s	(1117 a.s) 7	5						_		80	% 00:00	:05	00:00:06				
P	lond	d times	real	uired	l to re	ach	a cert	ain				85	% 00:00	:06	00:00:07				
												90	% 00:00	:08	00:00:09				
C	legre	ee of u	nifor	mity	arep	orese	nted.	Both				95	% 00:00	:10	00:00:11				
	nga	ssed ar	nd an		I blon	d tin		o cho				96	% 00:00	:11	00:00:12				
U	Inga	sseu ai	nu ga	15560		u un	ies ai	e 5110	vv11.			97	% 00:00	:12	00:00:13				
												98	% 00:00	:13	00:00:15				
												99	% 00:00	:16	00:00:18				
												100	% 00:00	:24	00:00:27				
De	sign 5/7	🖆 Duplicat	te 🖷 New	₿ [¥] Delete	Move: 🛧 T	op 🕇 Up 🤸	↓ Down 业 B	ottom Sort:	Z↓ • Z↓ •	rev/s: 1.3	Tag: Gas	Dispersion	C	Comment: Tu	ırbine + 2 Up Pum	ping Impellers			
ID	(i)	Vessel	T (m)	Z (m)	V₁ (m³)	Bottom	Тор	Impeller	rev/s	P (kW)		Load (%)	Blend Ti			M-Phase	5	Comment	
1	~	Cylindrical Cylindrical	1.00 2.03	1.00 3.45	0.733 10.759	Ellipse Ellipse	Ellipse Ellipse	HF-N HF-N	5.0 1.9	0.38 3.0		19% 75%	00:00 00:00		6/10 1 10/10		Single Hydrofoil - Narrow Suspension	Fully suspe	andod
3	Š	Cylindrical	2.03	3.45	7.2114	Ellipse	Ellipse	RDT	1.9	2.35		75% 59%	00:00		5/10		Suspension Multiple spargers	Multiple Ru	
4	J	Cylindrical	2.03	2.84	8.2344	Conical	Ellipse	SWPV	1.0	4.02		51%	00:00		7/10		Sweeper	Conical bot	
5	 ✓ 	Cylindrical	2.03	3.80	11.884	Ellipse	Ellipse	BDT	1.3	3.69		37%	00:00		8/10		Gas Dispersion	Turbine + 2	
6	✓	Rectangular	1.60	0.75	1.4042	Angled	Flat	HF-N	4.0	0.24	l 0.4	61%	00:00	:18	5/10		Angled Bottom	Rectangula	
7	×	Cylindrical	1.00	1.00	0.733	Ellipse	Ellipse	HF-N	5.0	1.15	5 10.0	11%			0/10		Cavern Size	Yield stress	; fluid

KaeMix Student User Guide

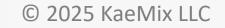
Drive Loads

🗱 KaeMix Student	– O X										
FILE SEND EDIT PROCESS DESIGN PERFORMANCE TOOLS SETTINGS WINDOW HELP											
🖆 Open 🗧 Save 🗉 File Info 🆻 🦿 🗇 🏦 📅 Units 🔹 👭 🖯 🗃 🕿 🛠 🏘 🎤 Quick Agitator Design 🖾 Copy D	Prawing 🖻 Scale-Up 🕅 Reposition 🔹 Load Motor 😂 Speed 😒 Standard Speed 🖂 Resize 🙂 Refresh										
Design Vessel Process Liquids Drive Impellers Baffles Solids Gas Flow Sparger File Info	Drawing Results Report Loads Blending Suspension Gas Dispersion Power Dimensionless Guides										
Drives Main Drive	☐ Drive Loads										
Style Top Entering	Power Draw Ungassed Gassed										
Drive Name	Total Power Draw (kW) 0.0027										
Motor (kW) 10											
Maximum Load (%) 80 Power draw and moto	P/V (kW/m³) 0.0796										
Speed (RPM) 480 -	P/Mass (W/kg) 0.0783										
Speed (rev/s) 8 load are shown	Motor Load										
Rotation Clockwise	Main Drive (10kW) 0.0%										
Shaft Design 🔽 Automatic											
Shaft Support 🗖 Steady Bearing											
Shaft Length 굔 Automatic											
Shaft Length (m) 0.45											
Shaft Off Bottom (m) 0,1											
Shaft Type Solid Shaft Diameter (m) 0.01	or each design for the										
main drive: the speed,	the power draw, the motor										
capacity, and the moto	r load										
capacity, and the moto											
Design 3/3 [™] Duplicate [™] New [™] Delete Move: [↑] Top [↑] Up [↓] Down [↓] Bottom Sort: [™] [↓] [↓] [↓] [↓] RPM: ⁴	480 Tag: Two Impellers S/D = 3.7 Comment: CH/Z = 46%										
$\frac{1}{10} \text{(I)} \text{(I)} $											
1 ✓ Cylindrical 0.29 0.51 0.0337 Flat Flat HF-N 480.0 1.3E-03	Image: Non-Scale M-Scale M-Scale										
2 ✓ Cylindrical 0.29 0.51 0.0337 Flat Flat HF-N 480.0 2.7E-03 3 ✓ Cylindrical 0.29 0.51 0.0337 Flat Flat HF-N 480.0 2.7E-03	10.0 0% 00:00:13 1.01 2.0/10 3.0/10 Two Impellers S/D = 3.0 CH/Z = 95% 10.0 0% 00:00:13 1.01 2.0/10 3.0/10 Two Impellers S/D = 3.7 CH/Z = 46%										
	10.0 $0.00.15$ 1.01 $2.0/10$ $5.0/10$ 100 involutipeties $5/D = 5.7$ $CH/Z = 40%$										

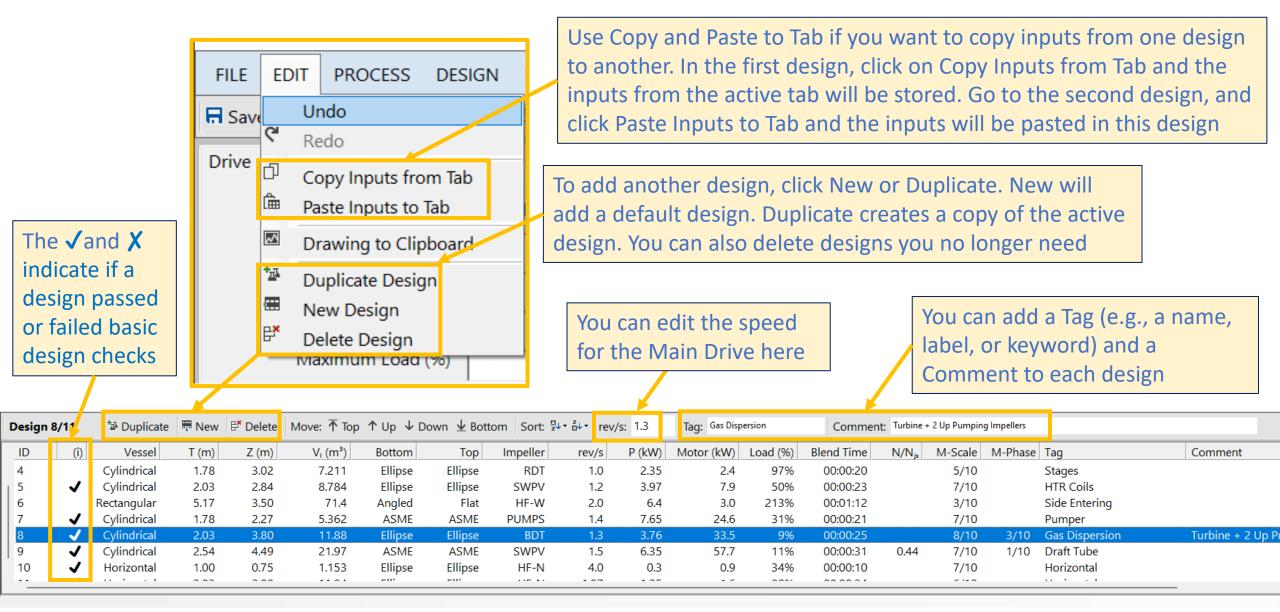
Power Draw Details

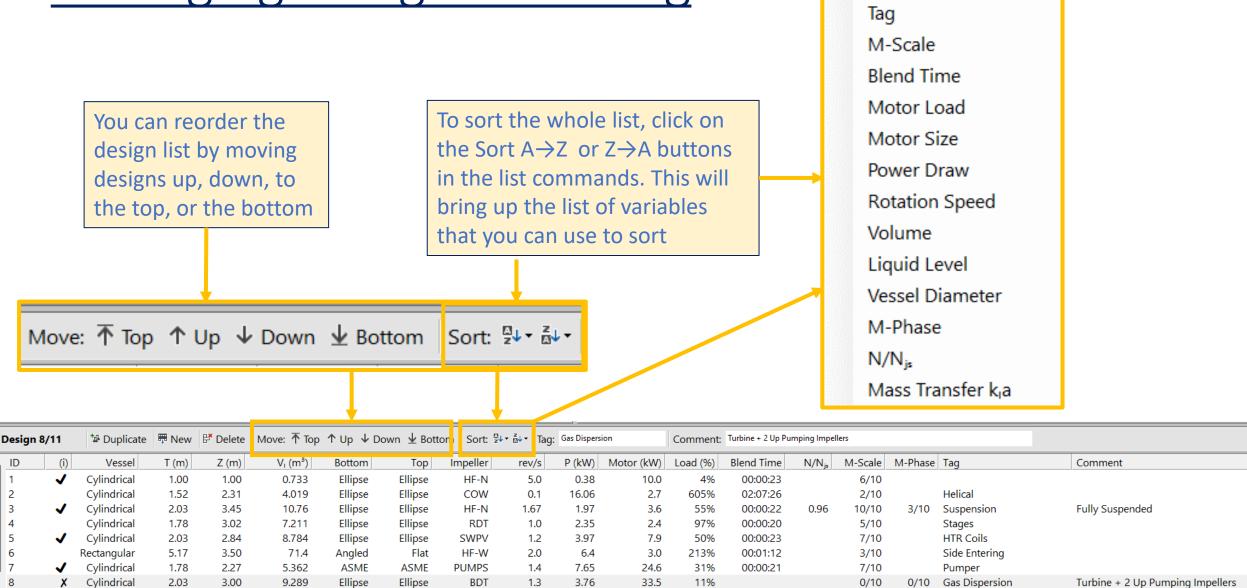
FILE EDIT PROCESS DESIGN PERFORMANCE TOOLS SETTINGS WINDOW HEIP	1					e 🖸 Refres	h
Design Vessel Process Liquids Drive Impellers Baffles Heat Gas Flow Sparger Solids Particles	bads Blenc Set 2 HF-W 4	ling Suspensio	on Gas Disp			e 🖸 Refres	h
Impellers © (1-4) ○ (5-8) ♥ Set 1 ⇔ F set 2 ⇔ F set 3 □ Set 4 Type Bat Style Disk Turbine □ General □ Nr Blades 0 Drive 1 Style Disk Turbine □ General □ Nr Blades 6 Drive 1 Ungassed torque M, flow / pumping rate Q, and power P per impeller Nr Blades 6 Drive 1.3 Blade Angle (decease) 0.4064 2.563 Power P (kW) 2.19 Nr Impellers 1 Total M (Nm) 268 First Bottom Clearane (m) 0.4064 2.563 Power P (kW) 2.19 Nr Impellers 1 Total Q (m*) 5 0.475 Image: Clearance (m) 0.4064 2.563 Total (M (Nm) 250 Gassed M, (Nm) 250 Gassed Values per impeller Gassed Values per impeller set Total Q (m*) 5 0.465 Gassed Q, (m*) 5 0.465 Blade Width Ratio (V/D) 0.4 Gassed totals for the impeller set Total M, (Nm) 250 Gassed Q, (m*) 5 0.465 Blade Pitch / Diameter (P/D) Gassed totals for	Set 2 HF-W 4			ersion HT	Dat Power		
Connected To Main Drive → Main	HF-W 4	Set 3	Set 4		Rate Power	l imensio	nless Guides
Style Disk Turbine General Imain Drive Imain Drive <t< td=""><td>4</td><td></td><td></td><td>Set 5</td><td>Set 6</td><td>Set 7</td><td>Set 8</td></t<>	4			Set 5	Set 6	Set 7	Set 8
Style Disk Turbine General Image: Style Nr Blades 6 Type Bakker HEoil-Wide Image: Style Speed N (rev/s) 1.3 Ungassed torque M, flow / pumping rate Q, and power P per impeller Speed N (rev/s) 1.3 Blade Angle (degreeat) Orque M (Nm) 268 Number of Imp Ungassed totals for the impeller set Nr Impellers First Bottom Clearance (m) 0.4064 2:563 Nr Impeller Note Gassed values per impeller Gassed Q, (m ² /s) 0.475 Diameter / Tank Ratio (D/T) 0.4 Gassed values per impeller set Total Q (m ³ /s) 0.465 Blade Width Ratio (N/D) 0.4 Gassed totals for the impeller set Total Q, (m ³ /s) 0.465 Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Total Q, (m ³ /s) 0.465 Diameter (P/D) Gassed totals for the impeller set Total Q, (m ³ /s) 0.465 Diameter (P/D) Gassed totals for the impeller set Total Q, (m ³ /s) 0.465 Diameter (P/D) Gassed totals for the impeller set Total Q, (m ³ /s) 0.465 Total Q, (m ³ /s) 0.4							
Type Bakker HFoil-Wide Drive 1 Ungassed torque M, flow / pumping rate Q, and power P per impeller Speed N (rev/s) 1.3 Blade Angle (degreeen) Q, and power P per impeller Power P (kW) 2.19 Blade Angle (degreeen) Nr Impellers 1 Total M (Nm) 268 Number of Imp Ungassed totals for the impeller set Total M (Nm) 268 First Bottom Clearance (m) 0.4064 2.563 Total Q (m ³ /s) 0.475 Diameter / Tank Ratio (D/T) 0.4 Gassed values per impeller Gassed P ₆ (kW) 2.19 Blade Width Ratio (W/D) 0.2 0.73 Gassed totals for the impeller set Gassed P ₆ (kW) 2.05 Total P ₆ (kW) 2.05 Total Q, (m ³ /s) 0.465 Gassed P ₆ (kW) 2.05 Blade Width Ratio (W/D) Gassed totals for the impeller set Total M ₆ (Nm) 250 Total Q, (m ³ /s) 0.465 Design 8/11 ** Duplicate ** New ** Delete Move: * Top * Up + Down ± Bottom Sort: \$* * \$* * rev/s 1.3 Tag: Ges Dispersion 1D Vessel T (m) Z (m) V, (m ³) Bottom<	1						
Ungassed torque M, flow / pumping rate Q, and power P per impeller Speed N (rev/s) 1.3 Blade Angle (degreenet) Q, and power P per impeller First Bottom Clearance Torque M (Nm) 268 Number of Imt Ungassed totals for the impeller set Total Q (m²/s) 0.475 First Bottom Clearance (m) 0.4064 2.563 Total Q (M²/s) 0.475 Diameter / Tank Ratio (D/T) 0.4 Gassed values per impeller Gassed Pa (kW) 2.05 Blade Width Ratio (V/D) 0.4 Gassed totals for the impeller set Gassed Pa (kW) 2.05 Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Total Q, (m²/s) 0.465 Clearance / Tank Ratio (W/D) Gassed totals for the impeller set Total Q, (m²/s) 0.465 Gassed Pa (kW) 2.05 Total Q, (m²/s) 0.465 Gassed Pa (kW) 2.05 Total Q, (m²/s) 0.465 Total Q, (m²/s) 0.465 Gassed Pa (kW) 2.05 Diameter (P/D) Gassed totals for the impeller set Total Q, (m²/s) 0.465 Total Q, (m²/s) 0.465 Total Q, (m²/s) 0.465 Total Q, (m²/s) 0.465 T							
Q, and power P per impeller Flow Q (m³/s) 0.475 Blade Angle (demand) Number of Imp Ungassed totals for the impeller set Note 1 Siste Bottom Clearance (m) 0.4064 2.563 Total M (Nm) 268 Diameter / Tank Ratio (D/T) 0.4 Gassed values per impeller Gassed Q ₀ (m³/s) 0.455 Glearance / Tank Ratio (D/T) 0.4 Gassed values per impeller set Gassed Q ₀ (m³/s) 0.465 Blade Width Ratio (W/D) Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Total M ₀ (Nm) 250 Design 8/11 Duplicate ™ New F* Delete Move: Top ↑ Up ↓ Down ½ Bottom Sort: %+ & &+ rev/s 1.3 Tag: Gas Dispersion ID 0 Vessel T (m) Z (m) V (m³) Bottom Top Impeller rev/s P (kW) Motor (kW) Load (%) Blend Time 5 Cylindrical 2.03 2.84 8.7836 Ellipse HF-N 1.2 0.34 7.9 4% 00:00:58	1.3						
Q, and power P per impeller Flow Q (m³/s) 0.475 Blade Angle (degreect Number of Imp Ungassed totals for the impeller set Nr Impeller 1 First Bottom Clearance (m) 0.4064 2.563 Total Q (m³/s) 0.475 Last Bottom Clearance (m) 0.4064 2.563 Total Q (m³/s) 0.475 Diameter / Tank Ratio (D/T) 0.4 Gassed values per impeller Gassed Q ₈ (m³/s) 0.465 Glearance / Tank Ratio (C/T) 0.2 0.73 0.73 Gassed P ₈ (kW) 2.05 Blade Width Ratio (W/D) Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Total Q ₉ (m³/s) 0.465 Total Q ₉ (m³/s) 0.465 Total Q ₉ (m³/s) 0.465 Total Q ₉ (m³/s) 0.465 Total Q ₉ (m³/s) 0.465 Gassed P ₈ (kW) 2.05 Total Q ₉ (m³/s) 0.465 Total Q ₉ (m³/s) 0.465 Total Q ₉ (m³/s) 0.465 Gassed P ₈ (kW) 2.05 Total Q ₉ (m³/s) 0.465 Total Q ₉ (m³/s) 0.465 Total Q ₉ (m³/s) 0.465 Total P ₉ (kW) 2.05 Total P ₉ (kW) 2.05	159						
Blade Angle (degreent) Nr Impellers 1 Total M (Nm) 268 Number of Int Ungassed totals for the impeller set Total M (Nm) 268 First Bottom Clearane 0.4064 2.563 Total P (kW) 2.19 Diameter / Tank Ratio (D/T) 0.4 Gassed values per impeller Gassed Qe (m ³ /s) 0.465 Clearance / Tank Ratio (C/T) 0.2 0.73 Gassed totals for the impeller set Total M, (Nm) 250 Blade Width Ratio (W/D) Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Total M, (Nm) 250 Design 8/11 Total P, kw Delete Move: Top ↑ Up ↓ Down ½ Bottom Sort: ¼ + 👼 + rev/s 1.3 Tag: Ges Dispersion ID Vessel T (m) Z (m) V, (m ³) Bottom Top Impeller rev/s P (kW) Load (%) Blend Time 5 Cylindrical 2.03 2.84 8.7836 Ellipse HF-N 1.2 0.34 7.9 4% 00:00:58	0.746						
Blade Angle (decease) Number of Imp First Bottom Clearand Last Bottom Clearance (m) Last Bottom Clearance (m) Diameter / Tank Ratio (D/T) Clearance / Tank Ratio (C/T) Blade Width Ratio (W/D) Blade Pitch / Diameter (P/D) Blade Pitch / Di	1.3						
Number of Imp Ungassed totals for the impeller set First Bottom Clearance (m) 0.4064 2.563 Note Gassed values per impeller Diameter / Tank Ratio (D/T) 0.4 Gassed values per impeller Clearance / Tank Ratio (C/T) 0.2 0.73 Blade Width Ratio (W/D) Gassed totals for the impeller set Total Q, (m ³ /s) Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Total Q, (m ³ /s) Obsign 8/11 W Duplicate Mew Move: Top ↑ Up ↓ Down ½ Bottom Sort: ½+ Å+ rev/s 1.3 ID Vessel T (m) Z (m) V (m ³) Bottom Top Impeller rev/s P (kW) Load (%) Blend Time 5 Cylindrical 2.03 2.84 8.7836 Ellipse HF-N 1.2 0.34 7.9 4% 00:00:58	2						
First Bottom Clearand Last Bottom Clearance (m) 0.4064 2.563 Note Diameter / Tank Ratio (D/T) 0.4 Clearance / Tank Ratio (C/T) 0.2 Clearance / Tank Ratio (C/T) 0.2 Blade Width Ratio (W/D) Blade Pitch / Diameter (P/D) Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Total A_{9} (M) 250 Total P_{9} (KW) 2.05 Design 8/11 ** Duplicate ** New ** Delete Move: * Top * Up * Down * Bottom Sort: * * * $\frac{5}{4}$ * Cylindrical 2.03 2.84 8.7836 Ellipse HF-N 1.2 0.34 7.9 4% 00:00:58	319						
First Bottom Clearand Total P (kW) 2.19 Total P (kW) 2.19 Construction of the second	1.49						
Last Bottom Clearance (m) 0.4064 2.563 Note Diameter / Tank Ratio (D/T) 0.4 Clearance / Tank Ratio (C/T) 0.2 0.73 Blade Width Ratio (W/D) Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Gassed P ₉ (kW) 2.05 Total P ₉ (kW) 2.05 Total P ₉ (kW) 2.05 Design 8/11 Duplicate PNew P [*] Delete Move: Top \uparrow Up \downarrow Down \pm Bottom Sort: $\frac{n}{2} + \frac{n}{6} + \frac{1}{7}$ rev/s 1.3 Tag: Gas Dispersion Design 8/11 Duplicate PNew P [*] Delete Move: Top \uparrow Up \downarrow Down \pm Bottom Sort: $\frac{n}{2} + \frac{n}{6} + \frac{1}{7}$ rev/s 1.3 Tag: Gas Dispersion Design 8/11 Duplicate PNew P [*] Delete Move: Top \uparrow Up \downarrow Down \pm Bottom Sort: $\frac{n}{2} + \frac{n}{6} + \frac{1}{7}$ rev/s 1.3 Tag: Gas Dispersion Design 8/11 2.03 2.84 8.7836 Ellipse HF-N 1.2 0.34 7.9 4% 00:00:58	2.6						
Note Diameter / Tank Ratio (D/T) Clearance / Tank Ratio (C/T) Blade Width Ratio (W/D) Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Gassed P ₀ (kW) 2.05 Total M ₀ (Nm) 250 Total M ₀ (Nm) 250 Total M ₀ (Nm) 250 Total M ₀ (Nm) 250 Total Q ₀ (m ³ /s) 0.465 Gassed P ₀ (kW) 2.05 Total Q ₀ (m ³ /s) 0.465 Total P ₀ (kW) 2.05 Design 8/11 Design 8/11 Design 8/11 Design 8/11 Design 1 Design 1 Design 2 Control 1 Design 2 Control 1 Design 2 Design 2 Design 2 Design 2 Design 2 Design 2 Design 2 Design 2 Design 2 Design 3 Design 2 Design 3 Design 2 Design 3 Design 3 	0.000						
Diameter / Tank Ratio (D/T) Clearance / Tank Ratio (C/T) Blade Width Ratio (W/D) Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Gassed P ₀ (kW) 2.05 Total Q_9 (m ³ /s) 0.465 Gassed P ₀ (kW) 2.05 Total Q_9 (m ³ /s) 0.465 Total Q_9 (m ³ /s) 0.46	137						
Clearance / Tank Ratio (C/T) Blade Width Ratio (W/D) Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Gassed P ₀ (kW) 2.05 Total M ₀ (Nm) 250 Total M ₀ (Nm) 250 Total Q ₀ (m ³ /s) 0.465 Total P ₀ (kW) 2.05 Design 8/11 Duplicate PNew P [*] Delete Move: Top \uparrow Up \downarrow Down \pm Bottom Sort: $\frac{m}{2} + \frac{m}{6} + \frac{m}{7}$ rev/s 1.3 Tag: Gas Dispersion ID U Vessel T (m) Z (m) V ₁ (m ³) Bottom Top Impeller rev/s P (kW) Motor (kW) Load (%) Blend Time 5 \checkmark Cylindrical 2.03 2.84 8.7836 Ellipse Ellipse HF-N 1.2 0.34 7.9 4% 00:00:58	0.711						
Clearance / Tank Ratio (C/T) (0.2 Total M ₉ (Nm) 250 Total Q ₉ (m ³ /s) 0.465 Total P ₉ (kW) 2.05 Design 8/11 Total P ₉ (kW) 2.05 Design 8/11 Total P ₉ (kW) 2.05 Design 8/11 Total P ₉ (kW) 2.05 ID Vessel T (m) Z (m) Vi (m ³) Bottom Total P ₉ (kW) 2.03 2.84 8.7836 Ellipse HF-N 1.2 <	1.12						
Blade Width Ratio (W/D) Blade Pitch / Diameter (P/D) Design 8/11 [™] Duplicate [™] New [™] Delete Move: [↑] Top [↑] Up [↓] Down [⊥] Bottom Sort: [™] / ₂ + [×] / ₆ + [×] rev/s 1.3 Tag: ^{Gas Dispersion} ^{1D} ^① Vessel ^T (m) ^Z (m) ^V ₁ (m ³) ^{Bottom} Top Impeller rev/s ^P (kW) Motor (kW) ^{Load (%)} ^{Blend Time} ⁵ [✓] Cylindrical ^{2.03} ^{2.84} ^{8.7836} ^{Ellipse} ^{Ellipse} ^{HF-N} ^{1.2} ^{0.34} ^{7.9} ^{4%} ^{00:00:58}	275						
Blade Pitch / Diameter (P/D) Gassed totals for the impeller set Total P ₉ (kW) 2.05 Total P ₉ (kW) 2.05 Design 8/11 12 Duplicate \mathbb{P} New \mathbb{P} Delete Move: $\overline{\uparrow}$ Top \uparrow Up \downarrow Down $\underline{\downarrow}$ Bottom Sort: $\frac{P_{\downarrow}}{2} \cdot \frac{z}{6} \cdot \mathbf{r}$ rev/s 1.3 Tag: Gas Dispersion ID $\textcircled{0}$ Vessel T (m) Z (m) V ₁ (m ³) Bottom Top Impeller rev/s P (kW) Motor (kW) Load (%) Blend Time 5 \checkmark Cylindrical 2.03 2.84 8.7836 Ellipse Ellipse HF-N 1.2 0.34 7.9 4% 00:00:58	1.42						
Design 8/11TopDuplicateTopNewF* DeleteMove:TopTopDownDeleteSort:TureTureSort:Sort:TureSort: <td>2.25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2.25						
ID ① Vessel T (m) Z (m) V _i (m ³) Bottom Top Impeller rev/s P (kW) Motor (kW) Load (%) Blend Time 5 ✓ Cylindrical 2.03 2.84 8.7836 Ellipse HF-N 1.2 0.34 7.9 4% 00:00:58	2.25						
5 ✔ Cylindrical 2.03 2.84 8.7836 Ellipse Ellipse HF-N 1.2 0.34 7.9 4% 00:00:58	Comme	nt: Turbine + 2 Up	Pumping Impel	llers			
5 ✔ Cylindrical 2.03 2.84 8.7836 Ellipse Ellipse HF-N 1.2 0.34 7.9 4% 00:00:58	N/N _{js} M	-Scale M-Phas	se Tag		Con	nment	
6 Pertangular 517 250 714 Angled Elet UEW 20 104 160 659 000100		4.2/10	HTR Coils				
- 5		4.3/10	Side Ente	ering			
7 Cylindrical 1.78 2.27 5.3617 ASME ASME PUMPS 2.0 5.44 24.6 22% 00:00:26 8 ✓ Cylindrical 2.03 3.80 11.884 Ellipse Ellipse BDT 1.3 4.29 33.5 13% 00:00:24		2.4/10 7.9/10 3.0/10	Pumper) Gas Dispe	ersion	Turk	oine + 2 Up F	oumping Impe
9 🖌 Cylindrical 2.54 4.49 21.967 ASME ASME SWPS 1.5 10.15 57.7 18% 00:00:29	0.59	9.8/10 1.0/10) Draft Tub	be			
10 ✓ Horizontal 1.00 0.75 1.1529 Ellipse Ellipse HF-N 4.0 0.3 0.9 34% 00:00:01 11 ✓ Cylindrical 2.00 2.00 6.2832 Flat Flat RDT 0.63 1.36 10.0 14% 00:00:046		5.8/10 4.9/10	Horizonta Droplet S				

KaeMix Student User Guide


Dimensionless Numbers

KaeMix									
FILE EDIT PROCESS DESIGN PERFORMANCE TOOLS SETTINGS WINDOW HELP									
Open 🖬 Save 🗄 File Info 🦻 🥙 🗗 🏛 🕮 Units - 👭 🖯 🗃 🕿 🔲 🗏 🖉 Quick Agitator Design 🖾 Copy D	rawing 🔳 Scale-Up	🗐 Repositi	on 🗟 Load	Motor 🛛 🍣 Sp	oeed 🛇 Sta	andard Spee	ed 🖂 Resize	e 🖸 Refres	h
esign Vessel Process Liquids Drive Impellers Baffles Heat Gas Flow Sparger Solids Particles 4 >	Drawing Results R	eport Load	ds Blendin	g Suspensio	n Gas Disp	ersion HT	Rate Power	Dimensio	nless Guides
mpellers ⓒ (1-4) ○ (5-8) 🔽 Set 1 😂 🖾 Set 2 😂 🗆 Set 3 🗆 Set 4	Dimensionless	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	Set 7	Set 8
Connected To Main Drive	Туре	BDT	HF-W						
Style Disk Turbine V General V	Nr Blades	6	4						
Type Bakker	Reynolds Re	1.38E+04	1.74E+04						
Diameter (m) 0.8131 Dimensionless numbers are	Froude Fr	0.14	0.158						
Pump Direction	Power Po	2.33	0.771						
shown for each impeller set	Pumping Nq	0.68	0.75						
Number of blades 6	Gas Flow Fl	0.248	0.202						
Blade Width (m) 0.1626	P ₉ /P _u	0.935	0.863						
Blade Angle (descee)	Pog	2.18	0.665						
Number Reynolds Re = $\rho N D^2 / \mu$	Nq ₉	0.665	0.714						
First Bottom C Eroudo Er – $N_2 D / a$	D/T	0.4	0.45						
Last Bottom C FIOUUE FI - N- D / g	W/D								
Power Number Po = $P / (\rho N^3 D^5)$	Pitch/D								
Diamater / Tanl	C ₁ /T	0.2	0.73						
$\frac{1}{1} Pumping Number N_{q} = Q_{impeller} / (N D^{3})$	C ₂ /T	0.2	1.26						
	Nr Impellers	1	2						
Blade Width Gas Flow Number $FI = Q_{gas} / (N D^3)$	Cavern D/T								
Pesign 8/11 [™] Duplicate ■ New [™] Delete Move: Top ↓ Up ↓ Down ↓ Bottom Sort: → ↔ rev/s 1	.3 Tag: Gas Dispersio		Comment	Turbine + 2 Up	Pumping Impel	lers			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				cale M-Phas			Com	ment	
5 ✓ Cylindrical 2.03 2.84 8.7836 Ellipse Ellipse HF-N 1.2 0.34		00:00:58		/10	HTR Coils	5	com	ent	
6 ✔ Rectangular 5.17 3.50 71.4 Angled Flat HF-W 2.0 10.4		00:01:08		/10	Side Ente	ring			
7 Cylindrical 1.78 2.27 5.3617 ASME ASME PUMPS 2.0 5.44 8 ✔ Cylindrical 2.03 3.80 11.884 Ellipse Ellipse BDT 1.3 4.29		00:00:26 00:00:24		/10 /10 3.0/10	Pumper Gas Dispe	ersion	Turb	ine + 2 Un F	Pumping Imp
9 ✔ Cylindrical 2.54 4.49 21.967 ASME ASME SWPS 1.5 10.15	57.7 18%	00:00:29		/10 1.0/10					
10 ✔ Horizontal 1.00 0.75 1.1529 Ellipse Ellipse HF-N 4.0 0.3 11 ✔ Cylindrical 2.00 2.00 6.2832 Flat Flat RDT 0.63 1.36		00:00:10 00:00:46		/10 /10	Horizonta Droplet S				
TI ♥ Cymrunican 2.00 2.00 0.2052 Fiat Fiat KDI 0.03 1.30	10.0 14%	00:00:40	4.5	710	Dropiet S	nze			


KaeMix Student User Guide


Managing Designs

Managing Designs – Design List

Managing Designs - Sorting

Cylindrical

2.54

4.49

21.97

ASME

ASME

SWPV

1.5

2

5

6

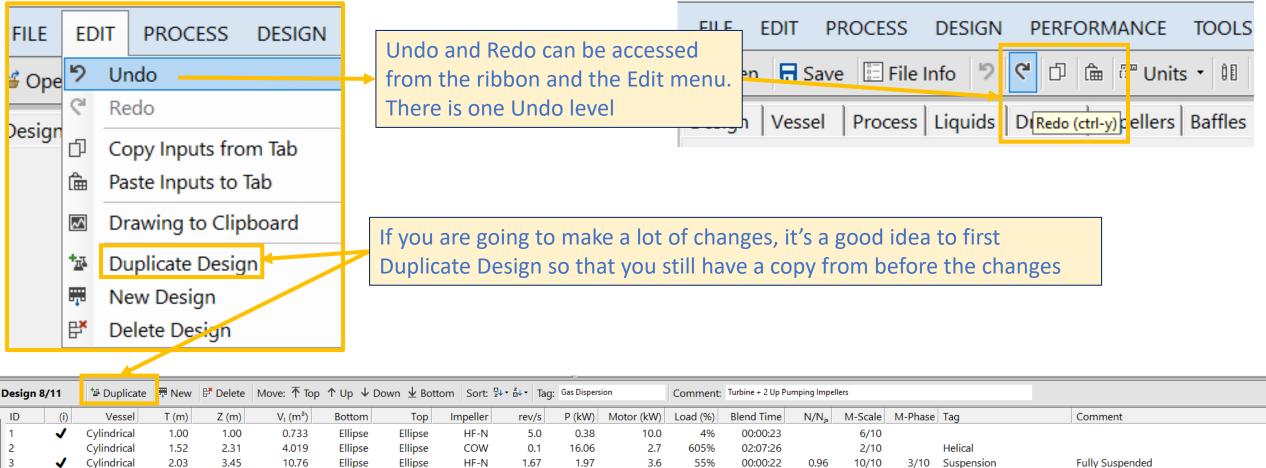
8

a

57.7

11%

00:00:31


0.41

7/10

1/10 Draft Tube

6.11


Managing Designs - Undo and Redo

, ID	(i)	Vessel	T (m)	Z (m)	V₁ (m³)	Bottom	Тор	Impeller	rev/s	P (kW)	Motor (kW)	Load (%)	Blend Time	N/N _{js}	M-Scale	M-Phase	Tag	Comment
1	~	Cylindrical	1.00	1.00	0.733	Ellipse	Ellipse	HF-N	5.0	0.38	10.0	4%	00:00:23		6/10			
2		Cylindrical	1.52	2.31	4.019	Ellipse	Ellipse	COW	0.1	16.06	2.7	605%	02:07:26		2/10		Helical	
3	✓	Cylindrical	2.03	3.45	10.76	Ellipse	Ellipse	HF-N	1.67	1.97	3.6	55%	00:00:22	0.96	10/10	3/10	Suspension	Fully Suspended
4		Cylindrical	1.78	3.02	7.211	Ellipse	Ellipse	RDT	1.0	2.35	2.4	97%	00:00:20		5/10		Stages	
5	✓	Cylindrical	2.03	2.84	8.784	Ellipse	Ellipse	SWPV	1.2	3.97	7.9	50%	00:00:23		7/10		HTR Coils	
6		Rectangular	5.17	3.50	71.4	Angled	Flat	HF-W	2.0	6.4	3.0	213%	00:01:12		3/10		Side Entering	
7	✓	Cylindrical	1.78	2.27	5.362	ASME	ASME	PUMPS	1.4	7.65	24.6	31%	00:00:21		7/10		Pumper	
8	X	Cylindrical	2.03	3.00	9.289	Ellipse	Ellipse	BDT	1.3	3.76	33.5	11%			0/10	0/10	Gas Dispersion	Turbine + 2 Up Pumping Impellers
9		Cylindrical	2.54	4.49	21.97	ASME	ASME	SWPV	1.5	6.11	57.7	11%	00:00:31	0.41	7/10	1/10	Draft Tube	

Menus

<u>File Menu</u>

😽 KaeMix

FILE	SEND	EDIT	PROCESS

- 💕 Open...
- Insert...
- Open Last Session
- Open Examples
- Open Verification Files...
- R Save
- Save As...
- Save Active Design Only...
- Close and Start New
- Save Report...
- Save Drawing...
- 🗐 Save Design List...
- Print Report...
- 🖶 Print Drawing...
- 🗄 File Info

🖏 Exit

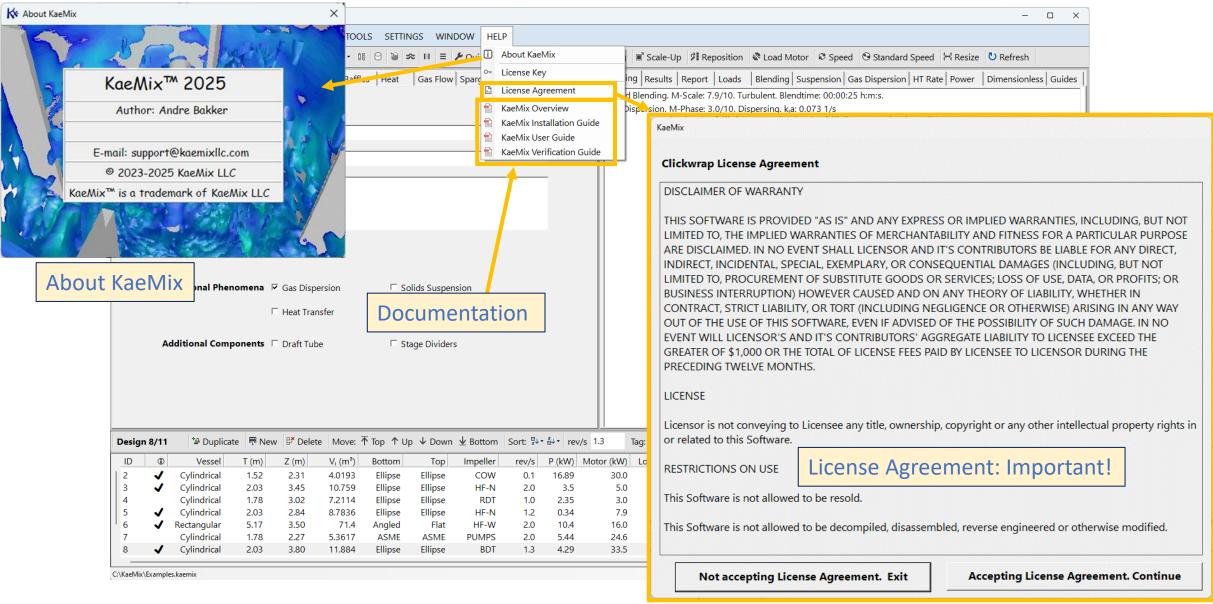
Only one file can be open at a time. So, if you *Open* a file, it will close the current file and then open the new file

If you *Insert* a file, the current file will stay open, and all the designs from the file you select will be copied into the current file

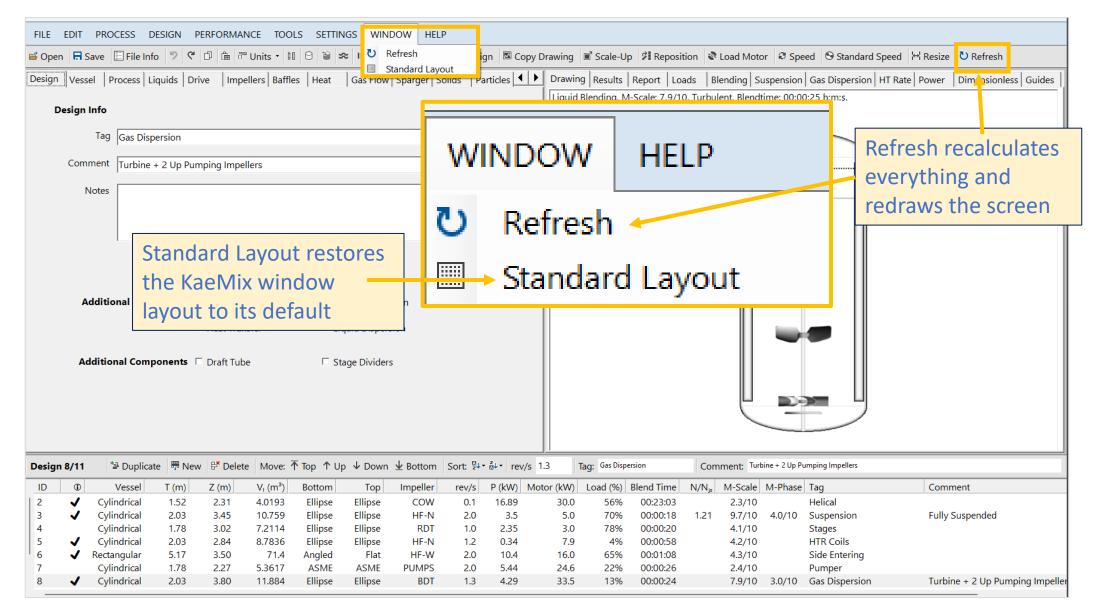
Open Last Session opens the file that was automatically saved when you exited KaeMix previously

Open Examples opens a file with several helpful examples

Save and Save As save all the designs in the file


Save Active Design Only saves a new file with only the active design (the design selected in the Design List). Then if you open another existing file and insert the file you just saved you have in effect copied that design into your existing file

Close and Start New closes the open file and starts a new file


Save Report saves the HTML report for the active design. *Tip: the* HTML report can also be read into Excel, Word, Calc, and Writer

KaeMix Student User Guide

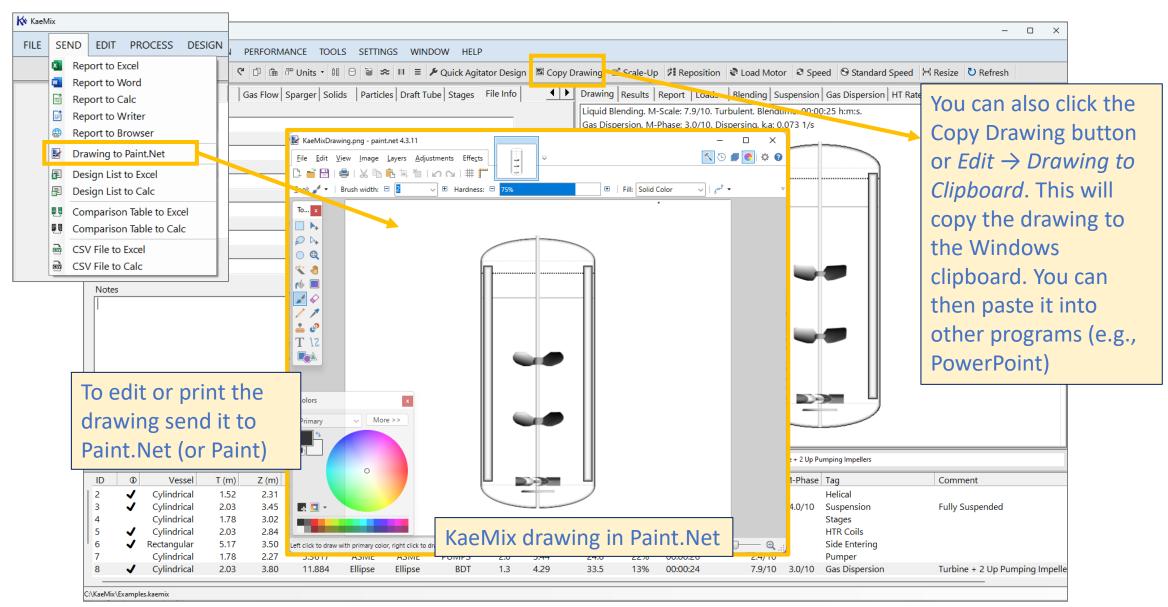
Help Menu

Window Menu

KaeMix Student User Guide

Send

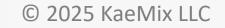
Send to Office Applications


FILE	SE	ND	EDIT	PROCESS	D	File Home Insert Page La $A1 \rightarrow : \times fx = fx$	ayout Formulas Data Review View KaeMix™	Help	Com
			2011			A	В	С	
	x	Rep	ort to E	xcel	29 30	Vessel Design			
		D		Mar and	31		Cylindrical		
	w	кер	ort to V	vora	33		3	(m)	_
	_				34		2.032	(m)	
	12	Pon	ort to C	'alc	35		Elliptical		
	100	Reh		aic	36		0.4064	(m)	
	-				37	7 Bottom Volume	0.8786	(m ³)	
	2	Ren	ort to V	Vriter	38		Elliptical		
		1.00	011110		39		0.4064	(m)	
		-			40		0.8786	(m ³)	
	B	Кер	ort to B	rowser	4		Stainless Steel		_
					42			(m)	
					4:		Stainless Steel	(m)	_
	2	Dra	wina to	Paint.Net	45		Mechanical Seal - Double		
	x	Des	ign List	to Excel	47	3		(°C)	
					50		100000	(N/m ²)	
		Des	ian List	to Calc	51		3	(m)	_
			.g., 2.5.	to care	52		3.328	(m)	
					53		9.289	(m ³)	
					54		0.987	Atm	
							1.147	Atm	
					55	Average Pressure		Atm	
					55	5 Bottom Pressure	1.306	Auti	
						5 Bottom Pressure 7 Flow Rate	1.306	(m ³ /s)	
					56	5 Bottom Pressure 7 Flow Rate 8 Residence Time	1.306		
					50 57 58 59 60	Bottom Pressure Flow Rate Residence Time Liquids	1.306	(m ³ /s)	
					50 57 58 59	5 Bottom Pressure Flow Rate 8 Residence Time 9 2 Liquids	Fermentation Broth	(m ³ /s)	
					56 57 58 59 60 61	Bottom Pressure Flow Rate Residence Time Liquids Primary Liquid		(m ³ /s)	
					56 53 59 60 67 62 63 63 64	5 Bottom Pressure Flow Rate 8 Residence Time 2 Liquids 9 Primary Liquid 3 Density 4 Viscosity Model	Fermentation Broth 1100 Newtonian	(m ³ /s) (h:m:s) (kg/m ³)	
					55 55 56 67 66 66 66 66 66 66 66 66 66 66 66 66	5 Bottom Pressure Flow Rate 3 Residence Time 4 Liquids 2 Primary Liquid 5 Density 4 Viscosity Model 5 Viscosity	Fermentation Broth 1100 Newtonian 2	(m³/s) (h:m:s)	
					56 53 59 60 67 62 63 63 64		Fermentation Broth 1100 Newtonian	(m ³ /s) (h:m:s) (kg/m ³)	

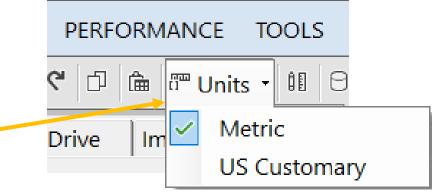
KaeMix checks if these applications are installed, and if so, enables Send To functionality:

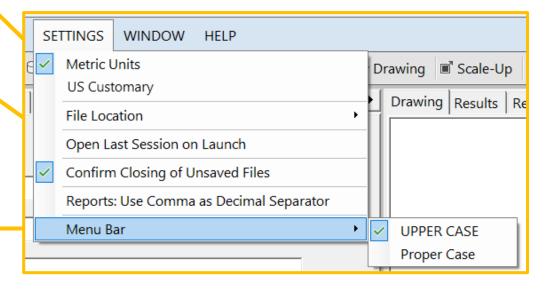
- Microsoft Office ("C:\Program Files\Microsoft Office")
- LibreOffice ("C:\Program Files\LibreOffice\program")
- Paint.Net ("C:\Program Files\paint.net"). If Paint.Net is not found it will enable Microsoft Paint instead

w	Auto	Save Off	🛛 📙 Doc	ument1 - W	/ord			₽ Search	(Alt+Q)				Andre Bakker	AB	\oplus	Ö	-		×
F	ile I	Home Ins	ert Draw	Design	Layout	References	Mailings	Review	View	Help	Table Design	Layout				🖵 Comr	nents	ि St	hare
L.	1.1.1	8	1 • • • • • • •	2 · · · i · · · ·	3 • • • 1 • •	. 4	5 • • • • • • •	5 • • • • • • •	7										
	F	÷																	
E		* КаеМіх™									Top Head Style		Elliptical						
1		August 13, 20	22 - Build 002	3							Top Head Depth		0.4064 0.8786				(m)		
		8/13/2022 7:5	0:36 PM						_		Top Head Volum Vessel Material	e	0.8786 Stainless Steel				(m ³)		
÷		File Info									Wall Thickness		ounico orea				(m)		
		1 110 1110									Bottom Thicknes						(m)		
÷		Project Name									Wetted Parts Mat Sealing	erial	Stainless Steel Mechanical Seal -	Double					
. 2		Location Customer																	
1		Designer									Operating	Condi	tions						
7		Vessel Manu:									Operating Tempe	rature		20		(°C)			
m		Mixer Manuf Project Descr									Operating Pressur			100000)	(N/m ²)			
		Design		8	1						Operating Level			3		(m)			
÷.		Tag			as Dispersio						Gassed Operating Operating Volum			3.328 9.289		(m) (m ³)			
		Comment		Tu	urbine + 2 U	p Pumping Impel	lers				Operating Pressur			0.987		Atm			
. 4		Applica	tion								Average Pressure			1.147		Atm			
1											Bottom Pressure Flow Rate			1.306		Atm (m ³ /s)			
Ξ.			Fermentations Pharmaceutica								Residence Time					(h:m:s)			
۱n		Process			enicillin. ster	oids, vitamins, et	c. Scale-up from	a previous expe	rience										
1						n non-Newtonian Typical scale of :			as		Liquids								
1						ine with up-pump					Primary Liquid		Fermentation Broth						
ė		Design	recommended.		-						Density		1100			(kg/m)		
		Notes Liquid Flows	Batch System								Viscosity Model Viscosity		Newtonian 2			(mPa.s			
Ŧ		Gas	√								Safety		No Safety Concerns			(1117 #.)	0		
		Dispersion Solid	x								. .								
		Suspension	~								Drives								
÷		Heat Transfer	Х								Set 1								
:		112HSIE									Style		Top	Entering					
		Vessel [Design								Drive Name Motor		33.44	ç		(kW			
÷		Vessel Style			Cylindric						Maximum Load		80			(%)			
		Straight Side			3			(m	i)		Speed Speed		78 1.3			(RP) (rev/			
6.		Diameter			2.032			(m	i)		Rotation			kwise		(rev/	5)		
1		Bottom Style Bottom Dept			Elliptical 0.4064			(m	0		Mounting Height		0			(m)			
		Bottom Volu			0.8786			(m			Steady Bearing		1						
1																			
Pag	e 1 of 7	983 words	💭 Engl	ish (Unite	K2		V D	ond	ort	ir		rd	(D) Focus 🖽					+	70%
					Νd	EIVII	ХК	epu	וו	11	ו Wo	I U							-


Send Drawing to Paint or Paint.Net

KaeMix Student User Guide



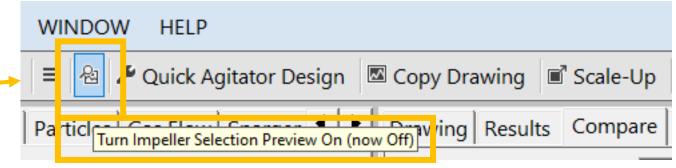

Settings

<u>Settings</u>

- You can easily switch between Metric and USA units using the Units button in the ribbon or the Settings menu
- If you want your last session automatically restored when you launch KaeMix then select the Open Last Session on Launch setting
 - Note, you can also do this manually from *File* → Open Last Session
- The text in the menu bar is by default in upper case font. If you prefer proper
 case, you can select this in the Settings menu

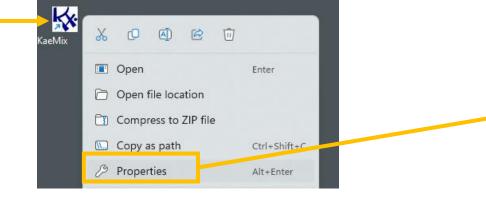
<u>Settings – Optional Units</u>

• Settings \rightarrow Optional Units

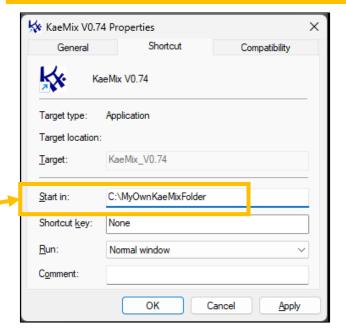

- Speed in RPM (instead of rev/s)
- Pressure in Bar (instead of Atm)
- Particle diameter in mm
- Particle diameter in micron
- Flow rate in m³/hr (instead of m³/s)
- Flow rate in m³/min (instead of m³/s)

/	Metric Units	-Un	Reposition	load Motor	Speed			
	US Customary Units	L op	Coud motor	or speed				
	Optional Units	• 🗸						
~	Draw Floor	~	Pressure in Bar (instead of Atm)				
	Draw Solids Levels Impeller Selection Preview Equipment Selection Preview	 ✓ 	Particle Diameter in mm (instead of m) Particle Diameter in micron (instead of m) Flow Rate in m ³ /hr (instead of m ³ /s)					
<u>~</u>	Drive Default Rotation Direction Reports: Comma as Decimal Separator Interface: Comma as Decimal Separator Spreadsheets: Auto Detect Decimal Separator	•	Flow Rate in m ³ ,	/min (instead of r	m³/s)			
~	Open Last Session on Launch							
~	Confirm Closing of Unsaved Files File Location	•						
	Menu Bar	<u> </u>						

Settings - Previews


- Equipment and impeller selections can be made graphically using Previews or using standard text dropdowns
- This feature is enabled from the
 Settings menu. There is one setting for Equipment (bottoms, heads, baffles, spargers) and one for impellers
- Previews can also be enabled or disabled from the corresponding icon in the ribbon

SET	TTINGS	WINDOW	HELP	
\checkmark	Metric	Units		
	US Cust	tomary Units		
	Option	•		
~	Draw F	oor		
\checkmark	Draw S	olids Levels		
\checkmark	Impelle	r Selection Pr	eview	
\checkmark	Equipm			
	Drive D	efault Rotatio	on Direction	۲
	Reports	s: Comma as [Decimal Separa	ator
	Interfac	e: Comma as	Decimal Sepa	rator
\checkmark	Spread	sheets: Auto [Detect Decima	Separator
~	Open L	ast Session or	n Launch	
~	Confirm	n Closing of U	nsaved Files	
	File Loo	ation		•
	Menu B	ar		•



Settings – File Location

- You can control where KaeMix files are saved by default
- Default is [User]\KaeMix folder and usually looks like this: "C:\Users\yourname\KaeMix"
- To change the default, select "Start in" Folder instead
- Specify the "Start in" Folder as follows
 - Right click on the KaeMix icon on the desktop and then click on Properties
 - Then specify the "Start In" folder and click Apply. Next time you launch KaeMix it will default to the "Start In" folder that you specified here

SET	TINGS	WINDOW	HELP					
~	Metric U							
	US Cust	tomary						
	Restore	Last Session	on Launch					
	File Loc	ation		•	~	[User]\KaeMix		
	Menu B	ar		F	"Start in" Folder			
SET	TINGS	WINDOW	HELP					
SET	ITINGS Metric U		HELP					
SET		Jnits	HELP					
SET	Metric U US Cust	Jnits						
SET	Metric U US Cust	Jnits omary Last Session		•		[User]\KaeMix		

KaeMix Student User Guide

Settings: Decimal Separator

- By default, KaeMix uses the decimal point as the decimal separator, e.g. "3.14"
- This can be changed to the decimal comma, e.g. "3,14" from the Settings menu

SE	TTINGS	WINDOW	HELP				
~	Metric Units US Customary Units						
	Optional Units						
\checkmark	Draw Floor						
\checkmark	Draw S	olids Levels					
\checkmark		r Selection Pr					
\checkmark	Equipm	ent Selection	Preview				
	Drive D	efault Rotatio	on Direction	•			
	Reports	: Comma as I	Decimal Separator				
	Interfac	e: Comma as	Decimal Separator				
\checkmark	Spread	sheets: Auto [Detect Decimal Separator				
~	Open L	ast Session or	n Launch				
\checkmark	Confirm	n Closing of U	Insaved Files				
	File Loo	ation		•			
	Menu B	ar		•			

END